A Comprehensive Survey on Bio-Inspired Algorithms: Taxonomy, Applications, and Future Directions
- URL: http://arxiv.org/abs/2506.04238v1
- Date: Mon, 26 May 2025 03:01:29 GMT
- Title: A Comprehensive Survey on Bio-Inspired Algorithms: Taxonomy, Applications, and Future Directions
- Authors: Shriyank Somvanshi, Md Monzurul Islam, Syed Aaqib Javed, Gaurab Chhetri, Kazi Sifatul Islam, Tausif Islam Chowdhury, Sazzad Bin Bashar Polock, Anandi Dutta, Subasish Das,
- Abstract summary: Bio-inspired algorithms (BIAs) utilize natural processes such as evolution, swarm behavior, foraging, and plant growth to solve complex, nonlinear, high-dimensional optimization problems.<n>This survey categorizes BIAs into eight groups: evolutionary, swarm intelligence, physics-inspired, ecosystem and plant-based, predator-prey, neural-inspired, human-inspired, and hybrid approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bio-inspired algorithms (BIAs) utilize natural processes such as evolution, swarm behavior, foraging, and plant growth to solve complex, nonlinear, high-dimensional optimization problems. This survey categorizes BIAs into eight groups: evolutionary, swarm intelligence, physics-inspired, ecosystem and plant-based, predator-prey, neural-inspired, human-inspired, and hybrid approaches, and reviews their core principles, strengths, and limitations. We illustrate the usage of these algorithms in machine learning, engineering design, bioinformatics, and intelligent systems, and highlight recent advances in hybridization, parameter tuning, and adaptive strategies. Finally, we identify open challenges such as scalability, convergence, reliability, and interpretability to suggest directions for future research. This work aims to serve as a foundational resource for both researchers and practitioners interested in understanding the current landscape and future directions of bio-inspired computing.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications [3.002468101812191]
We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023.<n>We propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions.<n>Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present.
arXiv Detail & Related papers (2025-06-14T18:19:05Z) - Scientific Hypothesis Generation and Validation: Methods, Datasets, and Future Directions [19.926445428206776]
Large Language Models (LLMs) are transforming scientific hypothesis generation and validation.<n>This survey provides a structured overview of LLM-driven approaches.<n>We examine techniques such as retrieval-augmented generation, knowledge-graph completion, simulation, causal inference, and tool-assisted reasoning.
arXiv Detail & Related papers (2025-05-06T19:22:23Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges [50.280704114978384]
Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text.<n> Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - The application of Evolutionary and Nature Inspired Algorithms in Data
Science and Data Analytics [2.1704774442395465]
We present our discovery of evolutionary and nature-inspired algorithms applications in Data Science and Data Analytics.
In this study, we aim to investigate four optimization algorithms that have been performed using the evolutionary and nature-inspired algorithms within data science and analytics.
arXiv Detail & Related papers (2022-02-06T21:22:41Z) - A step toward a reinforcement learning de novo genome assembler [0.4749981032986242]
Machine learning may emerge as an alternative (or complementary) way for developing more accurate and automated assemblers.
This study shed light on the application of machine learning, using reinforcement learning (RL), in genome assembly.
We improved the reward system and optimized the exploration of the state space based on pruning and in collaboration with evolutionary computing.
arXiv Detail & Related papers (2021-02-02T23:43:42Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - Qualities, challenges and future of genetic algorithms: a literature
review [0.0]
Genetic algorithms are computer programs that simulate natural evolution.
They have been used to solve various optimisation problems from neural network architecture search to strategic games.
Recent developments such as GPU, parallel and quantum computing, conception of powerful parameter control methods, and novel approaches in representation strategies may be keys to overcome their limitations.
arXiv Detail & Related papers (2020-11-05T17:53:33Z) - Emerging Biometrics: Deep Inference and Other Computational Intelligence [1.2922946578413577]
Biometric-enabled systems are evolving towards deep learning and deep inference.
We highlight the technology gaps that must be addressed in future generations of biometric systems.
arXiv Detail & Related papers (2020-06-22T02:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.