Qualities, challenges and future of genetic algorithms: a literature
review
- URL: http://arxiv.org/abs/2011.05277v3
- Date: Mon, 13 Sep 2021 16:35:52 GMT
- Title: Qualities, challenges and future of genetic algorithms: a literature
review
- Authors: Aymeric Vie, Alissa M. Kleinnijenhuis, Doyne J. Farmer
- Abstract summary: Genetic algorithms are computer programs that simulate natural evolution.
They have been used to solve various optimisation problems from neural network architecture search to strategic games.
Recent developments such as GPU, parallel and quantum computing, conception of powerful parameter control methods, and novel approaches in representation strategies may be keys to overcome their limitations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Genetic algorithms, computer programs that simulate natural evolution, are
increasingly applied across many disciplines. They have been used to solve
various optimisation problems from neural network architecture search to
strategic games, and to model phenomena of adaptation and learning. Expertise
on the qualities and drawbacks of this technique is largely scattered across
the literature or former, motivating an compilation of this knowledge at the
light of the most recent developments of the field. In this review, we present
genetic algorithms, their qualities, limitations and challenges, as well as
some future development perspectives. Genetic algorithms are capable of
exploring large and complex spaces of possible solutions, to quickly locate
promising elements, and provide an adequate modelling tool to describe
evolutionary systems, from games to economies. They however suffer from high
computation costs, difficult parameter configuration, and crucial
representation of the solutions. Recent developments such as GPU, parallel and
quantum computing, conception of powerful parameter control methods, and novel
approaches in representation strategies, may be keys to overcome those
limitations. This compiling review aims at informing practitioners and
newcomers in the field alike in their genetic algorithm research, and at
outlining promising avenues for future research. It highlights the potential
for interdisciplinary research associating genetic algorithms to pulse original
discoveries in social sciences, open ended evolution, artificial life and AI.
Related papers
- A Survey on State-of-the-art Deep Learning Applications and Challenges [0.0]
Building a deep learning model is challenging due to the algorithm's complexity and the dynamic nature of real-world problems.
This study aims to comprehensively review the state-of-the-art deep learning models in computer vision, natural language processing, time series analysis and pervasive computing.
arXiv Detail & Related papers (2024-03-26T10:10:53Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Automated Design of Salient Object Detection Algorithms with Brain
Programming [3.518016233072556]
This research work proposes expanding the artificial dorsal stream using a recent proposal to solve salient object detection problems.
We decided to apply the fusion of visual saliency and image segmentation algorithms as a template.
We present results on a benchmark designed by experts with outstanding results in comparison with the state-of-the-art.
arXiv Detail & Related papers (2022-04-07T20:21:30Z) - Applications of Gaussian Mutation for Self Adaptation in Evolutionary
Genetic Algorithms [0.0]
In 1960, the first genetic algorithm was developed by John H. Holland and his student.
We explore the mathematical intuition of the genetic algorithm in developing systems capable of evolving using Gaussian mutation.
arXiv Detail & Related papers (2022-01-02T04:18:25Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.