Unsupervised Meta-Testing with Conditional Neural Processes for Hybrid Meta-Reinforcement Learning
- URL: http://arxiv.org/abs/2506.04399v1
- Date: Wed, 04 Jun 2025 19:27:47 GMT
- Title: Unsupervised Meta-Testing with Conditional Neural Processes for Hybrid Meta-Reinforcement Learning
- Authors: Suzan Ece Ada, Emre Ugur,
- Abstract summary: Unsupervised Meta-Testing with Conditional Neural Processes (UMCNP) is a novel hybrid few-shot meta-reinforcement learning (meta-RL) method.<n>We demonstrate our method can adapt to an unseen test task using significantly fewer samples during meta-testing than the baselines in 2D-Point Agent and continuous control meta-RL benchmarks.
- Score: 1.9336815376402723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Unsupervised Meta-Testing with Conditional Neural Processes (UMCNP), a novel hybrid few-shot meta-reinforcement learning (meta-RL) method that uniquely combines, yet distinctly separates, parameterized policy gradient-based (PPG) and task inference-based few-shot meta-RL. Tailored for settings where the reward signal is missing during meta-testing, our method increases sample efficiency without requiring additional samples in meta-training. UMCNP leverages the efficiency and scalability of Conditional Neural Processes (CNPs) to reduce the number of online interactions required in meta-testing. During meta-training, samples previously collected through PPG meta-RL are efficiently reused for learning task inference in an offline manner. UMCNP infers the latent representation of the transition dynamics model from a single test task rollout with unknown parameters. This approach allows us to generate rollouts for self-adaptation by interacting with the learned dynamics model. We demonstrate our method can adapt to an unseen test task using significantly fewer samples during meta-testing than the baselines in 2D-Point Agent and continuous control meta-RL benchmarks, namely, cartpole with unknown angle sensor bias, walker agent with randomized dynamics parameters.
Related papers
- Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [117.48444197402858]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.<n>ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.<n>We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Meta-World Conditional Neural Processes [2.627046865670577]
We propose Meta-World Conditional Neural Processes (MW-CNP) to enable an agent to sample from its own "hallucination"
MW-CNP is trained on offline interaction data logged during meta-training.
arXiv Detail & Related papers (2023-02-20T21:18:02Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
We introduce TIGR, a Task-Inference-based meta-RL algorithm for tasks in non-parametric environments.
We decouple the policy training from the task-inference learning and efficiently train the inference mechanism on the basis of an unsupervised reconstruction objective.
We provide a benchmark with qualitatively distinct tasks based on the half-cheetah environment and demonstrate the superior performance of TIGR compared to state-of-the-art meta-RL approaches.
arXiv Detail & Related papers (2021-08-08T19:32:44Z) - Transfer Bayesian Meta-learning via Weighted Free Energy Minimization [37.51664463278401]
A key assumption is that the auxiliary tasks, known as meta-training tasks, share the same generating distribution as the tasks to be encountered at deployment time.
This paper introduces weighted free energy minimization (WFEM) for transfer meta-learning.
arXiv Detail & Related papers (2021-06-20T15:17:51Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.