Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order
- URL: http://arxiv.org/abs/2506.04430v2
- Date: Wed, 11 Jun 2025 17:05:40 GMT
- Title: Leveraging Coordinate Momentum in SignSGD and Muon: Memory-Optimized Zero-Order
- Authors: Egor Petrov, Grigoriy Evseev, Aleksey Antonov, Andrey Veprikov, Pavel Plyusnin, Nikolay Bushkov, Stanislav Moiseev, Aleksandr Beznosikov,
- Abstract summary: Fine-tuning Large Language Models (LLMs) is essential for adapting pre-trained models to downstream tasks.<n>Traditional first-order algorithms incur prohibitive memory and computational costs that scale poorly with model size.<n>We propose zero-order (ZO) optimization methods as a memory- and compute-efficient alternative.
- Score: 38.99428012275441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning Large Language Models (LLMs) is essential for adapting pre-trained models to downstream tasks. Yet traditional first-order optimizers such as Stochastic Gradient Descent (SGD) and Adam incur prohibitive memory and computational costs that scale poorly with model size. In this paper, we investigate zero-order (ZO) optimization methods as a memory- and compute-efficient alternative, particularly in the context of parameter-efficient fine-tuning techniques like LoRA. We propose $\texttt{JAGUAR SignSGD}$, a ZO momentum-based algorithm that extends ZO SignSGD, requiring the same number of parameters as the standard ZO SGD and only $\mathcal{O}(1)$ function evaluations per iteration. To the best of our knowledge, this is the first study to establish rigorous convergence guarantees for SignSGD in the stochastic ZO case. We further propose $\texttt{JAGUAR Muon}$, a novel ZO extension of the Muon optimizer that leverages the matrix structure of model parameters, and we provide its convergence rate under arbitrary stochastic noise. Through extensive experiments on challenging LLM fine-tuning benchmarks, we demonstrate that the proposed algorithms meet or exceed the convergence quality of standard first-order methods, achieving significant memory reduction. Our theoretical and empirical results establish new ZO optimization methods as a practical and theoretically grounded approach for resource-constrained LLM adaptation. Our code is available at https://github.com/brain-mmo-lab/ZO_LLM
Related papers
- Low-rank Momentum Factorization for Memory Efficient Training [13.464518325870444]
Momentum Factorized (MoFaSGD) maintains a dynamically updated low-rank SVD representation of the first-order momentum.<n>We demonstrate MoFaSGD's effectiveness on large language model benchmarks, achieving a competitive trade-off between memory reduction (e.g. LoRA) and performance.
arXiv Detail & Related papers (2025-07-10T18:04:52Z) - Visualising Policy-Reward Interplay to Inform Zeroth-Order Preference Optimisation of Large Language Models [0.36326779753373206]
Zeroth-Order (ZO) optimisation, using function evaluations instead of gradients, reduces memory usage but suffers from slow convergence in high-dimensional models.<n>We introduce ZOPrO, a novel ZO algorithm designed for Preference optimisation in LLMs.<n>We demonstrate that our method consistently enhances reward signals while achieving convergence times comparable to first-order methods.
arXiv Detail & Related papers (2025-03-05T12:49:48Z) - Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
We propose a new family of algorithms that uses the linear minimization oracle (LMO) to adapt to the geometry of the problem.<n>We demonstrate significant speedups on nanoGPT training using our algorithm, Scion, without any reliance on Adam.
arXiv Detail & Related papers (2025-02-11T13:10:34Z) - Lean and Mean Adaptive Optimization via Subset-Norm and Subspace-Momentum with Convergence Guarantees [5.399838579600896]
We introduce two complementary complement techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks.<n>The first technique, Subset-m step size, generalizes AdaGrad-Norm and AdaGrad(-Norm) through step-size sharing.<n>The second technique, Subspace-Momentum, reduces the momentum state's memory footprint by momentum to a low-dimensional subspace.
arXiv Detail & Related papers (2024-11-11T16:48:07Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
As language models grow in size, memory demands for backpropagation increase.
Zeroth-order (ZOZO) optimization methods offer a memory-efficient alternative.
We show that SubZero enhances fine-tuning and achieves faster results compared to standard ZOZO approaches.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
Zeroth-order (ZO) algorithms offer a promising alternative by approximating gradients using finite differences of function values.
Existing ZO methods struggle to capture the low-rank gradient structure common in LLM fine-tuning, leading to suboptimal performance.
This paper proposes a low-rank ZO algorithm (LOZO) that effectively captures this structure in LLMs.
arXiv Detail & Related papers (2024-10-10T08:10:53Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.