Neurosymbolic Artificial Intelligence for Robust Network Intrusion Detection: From Scratch to Transfer Learning
- URL: http://arxiv.org/abs/2506.04454v1
- Date: Wed, 04 Jun 2025 21:15:30 GMT
- Title: Neurosymbolic Artificial Intelligence for Robust Network Intrusion Detection: From Scratch to Transfer Learning
- Authors: Huynh T. T. Tran, Jacob Sander, Achraf Cohen, Brian Jalaian, Nathaniel D. Bastian,
- Abstract summary: We extend ODXU, a Neurosymbolic AI framework, to enhance robustness, interpretability, and generalization in NIDS.<n>We develop a transfer learning strategy that enables the reuse of a pre-trained ODXU model on a different dataset.
- Score: 5.9606188355072725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network Intrusion Detection Systems (NIDS) play a vital role in protecting digital infrastructures against increasingly sophisticated cyber threats. In this paper, we extend ODXU, a Neurosymbolic AI (NSAI) framework that integrates deep embedded clustering for feature extraction, symbolic reasoning using XGBoost, and comprehensive uncertainty quantification (UQ) to enhance robustness, interpretability, and generalization in NIDS. The extended ODXU incorporates score-based methods (e.g., Confidence Scoring, Shannon Entropy) and metamodel-based techniques, including SHAP values and Information Gain, to assess the reliability of predictions. Experimental results on the CIC-IDS-2017 dataset show that ODXU outperforms traditional neural models across six evaluation metrics, including classification accuracy and false omission rate. While transfer learning has seen widespread adoption in fields such as computer vision and natural language processing, its potential in cybersecurity has not been thoroughly explored. To bridge this gap, we develop a transfer learning strategy that enables the reuse of a pre-trained ODXU model on a different dataset. Our ablation study on ACI-IoT-2023 demonstrates that the optimal transfer configuration involves reusing the pre-trained autoencoder, retraining the clustering module, and fine-tuning the XGBoost classifier, and outperforms traditional neural models when trained with as few as 16,000 samples (approximately 50% of the training data). Additionally, results show that metamodel-based UQ methods consistently outperform score-based approaches on both datasets.
Related papers
- Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
Differential privacy (DP) provides a robust framework for protecting individual data.<n>We introduce a novel principled method for DP synthetic image embedding generation.<n> Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy.
arXiv Detail & Related papers (2025-06-20T00:17:14Z) - Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems [1.1265248232450553]
This paper proposes a self-supervised contrastive learning approach for generalizable intrusion detection on raw packet sequences.<n>Our framework exhibits better performance in comparison to existing NetFlow self-supervised methods.<n>Our model provides a strong baseline for supervised intrusion detection with limited labeled data.
arXiv Detail & Related papers (2025-05-12T13:42:00Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
We argue that the reliability of deep learning models is limited, even if they can be shown to obtain perfect classification accuracy on the test data.
We show that pre-training a deep neural network on a large-scale proxy task, as well as using mixed objective optimization network (MOON), can improve the alignment of decision foundations between models and experts.
arXiv Detail & Related papers (2024-07-19T06:41:31Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Enhancing Cross-Dataset Performance of Distracted Driving Detection With Score Softmax Classifier And Dynamic Gaussian Smoothing Supervision [6.891556476231427]
Deep neural networks enable real-time monitoring of in-vehicle drivers, facilitating the timely prediction of distractions, fatigue, and potential hazards.<n>Recent research has exposed unreliable cross-dataset driver behavior recognition due to a limited number of data samples and background noise.<n>We propose a Score-Softmax classifier, which reduces the model overconfidence by enhancing category independence.
arXiv Detail & Related papers (2023-10-08T15:28:01Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - Robust Attack Detection Approach for IIoT Using Ensemble Classifier [0.0]
The objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network.
The proposed model is tested on standard IoT attack outliers such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT.
The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.
arXiv Detail & Related papers (2021-01-30T07:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.