Matching Markets Meet LLMs: Algorithmic Reasoning with Ranked Preferences
- URL: http://arxiv.org/abs/2506.04478v1
- Date: Wed, 04 Jun 2025 21:51:15 GMT
- Title: Matching Markets Meet LLMs: Algorithmic Reasoning with Ranked Preferences
- Authors: Hadi Hosseini, Samarth Khanna, Ronak Singh,
- Abstract summary: We study matching markets, a core framework behind applications like resource allocation and ride-sharing.<n>We evaluate several state-of-the-art models on a hierarchy of preference-based reasoning tasks.<n>Surprisingly, even top-performing models with advanced reasoning struggle to resolve instability in large markets.
- Score: 12.277072346419748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of Large Language Models (LLMs) has driven progress in reasoning tasks -- from program synthesis to scientific hypothesis generation -- yet their ability to handle ranked preferences and structured algorithms in combinatorial domains remains underexplored. We study matching markets, a core framework behind applications like resource allocation and ride-sharing, which require reconciling individual ranked preferences to ensure stable outcomes. We evaluate several state-of-the-art models on a hierarchy of preference-based reasoning tasks -- ranging from stable-matching generation to instability detection, instability resolution, and fine-grained preference queries -- to systematically expose their logical and algorithmic limitations in handling ranked inputs. Surprisingly, even top-performing models with advanced reasoning struggle to resolve instability in large markets, often failing to identify blocking pairs or execute algorithms iteratively. We further show that parameter-efficient fine-tuning (LoRA) significantly improves performance in small markets, but fails to bring about a similar improvement on large instances, suggesting the need for more sophisticated strategies to improve LLMs' reasoning with larger-context inputs.
Related papers
- NDCG-Consistent Softmax Approximation with Accelerated Convergence [67.10365329542365]
We propose novel loss formulations that align directly with ranking metrics.<n>We integrate the proposed RG losses with the highly efficient Alternating Least Squares (ALS) optimization method.<n> Empirical evaluations on real-world datasets demonstrate that our approach achieves comparable or superior ranking performance.
arXiv Detail & Related papers (2025-06-11T06:59:17Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
First-order logic (FOL) reasoning is pivotal for intelligent systems.<n>Existing benchmarks often rely on extensive human annotation or handcrafted templates.<n>We propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models with the rigor and precision of symbolic provers.
arXiv Detail & Related papers (2025-02-10T15:31:54Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Aligning with Logic: Measuring, Evaluating and Improving Logical Preference Consistency in Large Language Models [31.558429029429863]
Large Language Models (LLMs) are expected to be predictable and trustworthy to support reliable decision-making systems.<n>This work examines logical preference consistency as a foundational requirement for building more dependable LLM systems.<n>We show that improving consistency leads to better performance in LLM-driven logic-based algorithms.
arXiv Detail & Related papers (2024-10-03T04:34:04Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Make Large Language Model a Better Ranker [20.532118635672763]
This paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO)
ALRO is designed to bridge the gap between the capabilities of LLMs and nuanced requirements of ranking tasks.
Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
arXiv Detail & Related papers (2024-03-28T07:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.