Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model
- URL: http://arxiv.org/abs/2506.04518v1
- Date: Wed, 04 Jun 2025 23:53:49 GMT
- Title: Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model
- Authors: Haibin Wu, Yuxuan Hu, Ruchao Fan, Xiaofei Wang, Kenichi Kumatani, Bo Ren, Jianwei Yu, Heng Lu, Lijuan Wang, Yao Qian, Jinyu Li,
- Abstract summary: Speech language models (Speech LMs) enable end-to-end speech-text modelling within a single model.<n>The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality.
- Score: 76.06585781346601
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Speech language models (Speech LMs) enable end-to-end speech-text modelling within a single model, offering a promising direction for spoken dialogue systems. The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality. In this work, we systematically compare representative joint speech-text decoding strategies-including the interleaved, and parallel generation paradigms-under a controlled experimental setup using the same base language model, speech tokenizer and training data. Our results show that the interleaved approach achieves the best alignment. However it suffers from slow inference due to long token sequence length. To address this, we propose a novel early-stop interleaved (ESI) pattern that not only significantly accelerates decoding but also yields slightly better performance. Additionally, we curate high-quality question answering (QA) datasets to further improve speech QA performance.
Related papers
- What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study [58.55905182336196]
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation.<n>We investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling.<n>We introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens.
arXiv Detail & Related papers (2025-06-14T15:26:31Z) - OZSpeech: One-step Zero-shot Speech Synthesis with Learned-Prior-Conditioned Flow Matching [3.05024318465243]
OZSpeech is the first TTS method to explore optimal transport conditional flow matching with one-step sampling.<n>Our approach operates on disentangled, factorized components of speech in token format, enabling accurate modeling of each speech attribute.<n> Experimental results show that our method achieves promising performance over existing methods in content accuracy, naturalness, prosody generation, and speaker style preservation.
arXiv Detail & Related papers (2025-05-19T07:31:55Z) - SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation [10.828717295018123]
We propose a unified embedding framework that eliminates the need for intermediate text representations.<n>Our model reduces pipeline latency by 50% while achieving higher retrieval accuracy compared to traditional two-stage methods.
arXiv Detail & Related papers (2025-01-26T15:04:02Z) - VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
We propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the large language models (LLMs) backbone.<n>Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks.
arXiv Detail & Related papers (2024-10-23T00:36:06Z) - IntrinsicVoice: Empowering LLMs with Intrinsic Real-time Voice Interaction Abilities [55.11130688075417]
We introduce IntrinsicVoic,e an LLM designed with intrinsic real-time voice interaction capabilities.
Our novelty architecture, GroupFormer, can reduce speech sequences to lengths comparable to text sequences.
We construct a multi-turn speech-to-speech dialogue dataset named method-500k which includes nearly 500k turns of speech-to-speech dialogues.
arXiv Detail & Related papers (2024-10-09T05:04:31Z) - A Non-autoregressive Generation Framework for End-to-End Simultaneous Speech-to-Speech Translation [48.84039953531355]
We propose a novel non-autoregressive generation framework for simultaneous speech translation (NAST-S2X)
NAST-S2X integrates speech-to-text and speech-to-speech tasks into a unified end-to-end framework.
It achieves high-quality simultaneous interpretation within a delay of less than 3 seconds and provides a 28 times decoding speedup in offline generation.
arXiv Detail & Related papers (2024-06-11T04:25:48Z) - Paralinguistics-Aware Speech-Empowered Large Language Models for Natural Conversation [46.93969003104427]
This paper introduces an extensive speech-text LLM framework, the Unified Spoken Dialog Model (USDM)<n>USDM is designed to generate coherent spoken responses with naturally occurring prosodic features relevant to the given input speech.<n>Our approach effectively generates natural-sounding spoken responses, surpassing previous and cascaded baselines.
arXiv Detail & Related papers (2024-02-08T14:35:09Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
We propose a unified-modal speech-unit-text pre-training model, SpeechUT, to connect the representations of a speech encoder and a text decoder with a shared unit encoder.
Our proposed SpeechUT is fine-tuned and evaluated on automatic speech recognition (ASR) and speech translation (ST) tasks.
arXiv Detail & Related papers (2022-10-07T17:57:45Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.