Please Translate Again: Two Simple Experiments on Whether Human-Like Reasoning Helps Translation
- URL: http://arxiv.org/abs/2506.04521v1
- Date: Thu, 05 Jun 2025 00:04:39 GMT
- Title: Please Translate Again: Two Simple Experiments on Whether Human-Like Reasoning Helps Translation
- Authors: Di Wu, Seth Aycock, Christof Monz,
- Abstract summary: Large Language Models (LLMs) demonstrate strong reasoning capabilities for many tasks, often by explicitly decomposing the task via Chain-of-Thought (CoT) reasoning.<n>textitTranslating Step-by-stepcitepbriakou2024translating, for instance, introduces a multi-step prompt with decomposition and refinement of translation with LLMs.<n>We show that simply prompting LLMs to translate again'' yields even better results than human-like step-by-step prompting.
- Score: 7.376832526909754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate strong reasoning capabilities for many tasks, often by explicitly decomposing the task via Chain-of-Thought (CoT) reasoning. Recent work on LLM-based translation designs hand-crafted prompts to decompose translation, or trains models to incorporate intermediate steps.~\textit{Translating Step-by-step}~\citep{briakou2024translating}, for instance, introduces a multi-step prompt with decomposition and refinement of translation with LLMs, which achieved state-of-the-art results on WMT24. In this work, we scrutinise this strategy's effectiveness. Empirically, we find no clear evidence that performance gains stem from explicitly decomposing the translation process, at least for the models on test; and we show that simply prompting LLMs to ``translate again'' yields even better results than human-like step-by-step prompting. Our analysis does not rule out the role of reasoning, but instead invites future work exploring the factors for CoT's effectiveness in the context of translation.
Related papers
- Compositional Translation: A Novel LLM-based Approach for Low-resource Machine Translation [20.704153242284114]
Machine Translation has been shown to benefit from in-context examples when they are semantically similar to the sentence to translate.<n>We propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations.<n>Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples.
arXiv Detail & Related papers (2025-03-06T15:37:31Z) - Lost in Literalism: How Supervised Training Shapes Translationese in LLMs [51.04435855143767]
Large language models (LLMs) have achieved remarkable success in machine translation.<n>However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge.<n>We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances.
arXiv Detail & Related papers (2025-03-06T12:14:45Z) - DRT: Deep Reasoning Translation via Long Chain-of-Thought [89.48208612476068]
In this paper, we introduce DRT, an attempt to bring the success of long CoT to neural machine translation (MT)<n>We first mine sentences containing similes or metaphors from existing literature books, and then develop a multi-agent framework to translate these sentences via long thought.<n>Using Qwen2.5 and LLama-3.1 as the backbones, DRT models can learn the thought process during machine translation.
arXiv Detail & Related papers (2024-12-23T11:55:33Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - A Preference-driven Paradigm for Enhanced Translation with Large Language Models [33.51585908894444]
Large language models (LLMs) can achieve remarkable translation performance using only a small amount of parallel data.
SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references.
We propose a preference-based approach built upon the Plackett-Luce model to overcome this plateau.
arXiv Detail & Related papers (2024-04-17T11:52:47Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.