Time Glasses: Symmetry Broken Chaotic Phase with a Finite Gap
- URL: http://arxiv.org/abs/2506.04740v2
- Date: Wed, 30 Jul 2025 07:35:27 GMT
- Title: Time Glasses: Symmetry Broken Chaotic Phase with a Finite Gap
- Authors: Taiki Haga,
- Abstract summary: We introduce the time glass, a non-periodic analogue of the discrete time crystal that arises in periodically driven quantum many-body systems.<n>We show that the Liouvillian gap remains finite in the thermodynamic limit, in contrast to time crystals where the gap closes exponentially with system size.<n>This result establishes a direct correspondence between microscopic spectral features and emergent macroscopic dynamics in driven dissipative quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the time glass, a non-periodic analogue of the discrete time crystal that arises in periodically driven dissipative quantum many-body systems. This phase is defined by two key features: (i) spatial long-range order arising from the spontaneous breaking of an internal symmetry, and (ii) temporally chaotic oscillations of the order parameter, whose lifetime diverges with system size. In other words, a time glass is a state of matter in which all components evolve in a synchronized yet chaotic manner. To characterize the time glass phase, we focus on the spectral gap of the one-cycle (Floquet) Liouvillian, which determines the decay rate of the slowest relaxation mode. Numerical studies of periodically driven dissipative Ising models show that, in the time glass phase, the Liouvillian gap remains finite in the thermodynamic limit, in contrast to time crystals where the gap closes exponentially with system size. We further demonstrate that the Liouvillian gap converges to the decay rate of the order-parameter autocorrelation derived from the classical (mean-field) dynamics in the thermodynamic limit. This result establishes a direct correspondence between microscopic spectral features and emergent macroscopic dynamics in driven dissipative quantum systems. At first glance, the existence of a nonzero Liouvillian gap appears incompatible with the presence of indefinitely persistent chaotic oscillations. We resolve this apparent paradox by showing that the quantum R\'enyi divergence between a localized coherent initial state and the highly delocalized steady state grows unboundedly with system size. This divergence allows long-lived transients to persist even in the presence of a finite Liouvillian gap.
Related papers
- Transition from non-ergodic to ergodic dynamics in an autonomous discrete time crystal [0.0]
We consider an autonomous system of two coupled single-mode cavities, one of which interacts with a multimode resonator.<n>For small coupling strengths between single-mode cavities, the Loschmidt echo oscillates periodically in time.<n>We show that at the transition point the time-averaged variance of the number of photons reaches a maximum, which serves as a signature of the transition.
arXiv Detail & Related papers (2025-01-29T06:27:46Z) - Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We observe excited self-ordered subradiant patterns in a quantum gas and report lifetimes far beyond the system's typical timescales.<n>Our work sheds light on the microscopic mechanisms stabilizing quantum states of matter and highlights the potential of photon-mediated forces for engineering correlations in many-body quantum systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving [1.641189223782504]
Time crystals are a nonequilibrium phase of matter that extend fundamental spontaneous symmetry breaking into the temporal dimension.<n>Here, we explore the nonequilibrium phase diagram of a two-dimensional dissipative Heisenberg spin system without external coherent or incoherent driving.<n>The emergence of limit cycle steady states breaks the continuous time-translation symmetry of this time-independent many-body system, classifying them as continuous time crystals.
arXiv Detail & Related papers (2024-03-13T12:40:32Z) - Time Crystal in a Single-mode Nonlinear Cavity [2.1692609084102505]
Time crystal is a class of non-equilibrium phases with broken time-translational symmetry.
We show in the time crystal phase there are sharp dissipative gap closing and pure imaginary eigenvalues of the Liouvillian spectrum in the thermodynamic limit.
arXiv Detail & Related papers (2023-10-09T16:49:59Z) - Nonequilibrium transition between dissipative time crystals [0.9217021281095907]
We show a dissipative phase transition in a driven nonlinear quantum oscillator in which a discrete time-translation symmetry is spontaneously broken in two different ways.
The corresponding regimes display either discrete or incommensurate time-crystal order, which we analyze numerically and analytically.
arXiv Detail & Related papers (2023-08-23T11:59:31Z) - Dissipative time crystal in a strongly interacting Rydberg gas [14.07614057267722]
We report the experimental observation of such dissipative time crystalline order in a room-temperature atomic gas.
The observed limit cycles arise from the coexistence and competition between distinct Rydberg components.
The nondecaying autocorrelation of the oscillation, together with the robustness against temporal noises, indicate the establishment of true long-range temporal order.
arXiv Detail & Related papers (2023-05-31T17:44:32Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.