Transition from non-ergodic to ergodic dynamics in an autonomous discrete time crystal
- URL: http://arxiv.org/abs/2501.17435v2
- Date: Fri, 21 Feb 2025 13:32:45 GMT
- Title: Transition from non-ergodic to ergodic dynamics in an autonomous discrete time crystal
- Authors: T. T. Sergeev, A. A. Zyablovsky, E. S. Andrianov,
- Abstract summary: We consider an autonomous system of two coupled single-mode cavities, one of which interacts with a multimode resonator.<n>For small coupling strengths between single-mode cavities, the Loschmidt echo oscillates periodically in time.<n>We show that at the transition point the time-averaged variance of the number of photons reaches a maximum, which serves as a signature of the transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an autonomous system of two coupled single-mode cavities, one of which interacts with a multimode resonator. We demonstrate that for small coupling strengths between single-mode cavities, the Loschmidt echo oscillates periodically in time and spontaneous breaking of time translation symmetry takes place. The Loschmidt echo behavior is an indication of the non-ergodic nature of the system when its evolution is time-reversible and the system retains a memory of the initial state under the action of small perturbations. This behavior reveals the presence of a time crystalline order in the autonomous system. In this regime, the system is a new class of time crystals - autonomous discrete time crystals. An increase in the coupling strength leads to a transition from periodic oscillations to an exponential decay in time of the Loschmidt echo. This corresponds to the transition from non-ergodic behavior to ergodic one in the system, and is accompanied by the disappearance of time crystalline order. We demonstrate that at the transition point the time-averaged variance of the number of photons reaches a maximum, which serves as a signature of the transition. We show that such a transition can also be observed when changing the number of degrees of freedom in the resonator, which is achieved by changing its length.
Related papers
- Equilibrium and nonequilibrium steady states with the repeated interaction protocol: Relaxation dynamics and energetic cost [44.99833362998488]
We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme.<n>Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla.
arXiv Detail & Related papers (2025-01-09T17:35:36Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.
Our scheme computes the entire state trajectory over a finite time window by minimizing a loss function that enforces the Schr"odinger's equation.
We showcase the method by simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Anomalous transport in U(1)-symmetric quantum circuits [41.94295877935867]
Investigation of discrete-time transport in a generic U(1)-symmetric disordered model tuned across an array of different dynamical regimes.
We develop an aggregate quantity, a circular statistical moment, which is a simple function of the magnetization profile.
From this quantity we extract transport exponents, revealing behaviors across the phase diagram consistent with localized, diffusive, and - most interestingly for a disordered system - superdiffusive regimes.
arXiv Detail & Related papers (2024-11-21T17:56:26Z) - Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Discrete Time Crystal Phase as a Resource for Quantum Enhanced Sensing [0.0]
We propose and characterize an effective mechanism to generate a stable discrete time crystal phase in a disorder-free many-body system.
The results show strong quantum-enhanced sensitivity throughout the time crystal phase.
A simple set of projective measurements can capture the quantum-enhanced sensitivity.
arXiv Detail & Related papers (2024-05-01T05:30:04Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - A Solvable Model for Discrete Time Crystal Enforced by Nonsymmorphic
Dynamical Symmetry [9.803965066368757]
We propose a class of discrete time crystals enforced by nonsymmorphic dynamical symmetry.
The exact solution of the time-dependent Schr"odinger equation shows that the system spontaneously exhibits a period extension.
We show that the subharmonic response is stable even when many-body interactions are introduced, indicating a DTC phase in the thermodynamic limit.
arXiv Detail & Related papers (2023-05-27T01:51:29Z) - Spontaneous symmetry breaking in non-steady modes of open quantum
many-body systems [0.0]
We consider spontaneous symmetry breaking in non-steady modes of an open quantum many-body system.
For a dissipative spin model, it is shown that the most coherent mode exhibits a transition from a disordered phase to a symmetry-broken ordered phase.
arXiv Detail & Related papers (2022-12-19T09:45:44Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Non-trivial dynamic regimes of small (nano-scale) quantum systems [0.0]
We show that system behavior becomes non-trivial and manifests a sort of transitions between regular and chaotic dynamics.
We generalize the model to include into consideration the coupling of the initially prepared single state to system phonon excitations.
We anticipate that the basic ideas inspiring our work can be applied to a large variety of interesting for the applications nano-systems.
arXiv Detail & Related papers (2021-05-24T11:19:19Z) - Realization of a discrete time crystal on 57 qubits of a quantum
computer [0.0]
We report the observation of a discrete time crystal on a chain consisting of 57 superconducting qubits on a state-of-the-art quantum computer.
We probe random initial states and compare the cases of vanishing and finite disorder to distinguish many-body localization from pre-thermal dynamics.
arXiv Detail & Related papers (2021-05-14T04:05:14Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.