Unregularized limit of stochastic gradient method for Wasserstein distributionally robust optimization
- URL: http://arxiv.org/abs/2506.04948v1
- Date: Thu, 05 Jun 2025 12:21:44 GMT
- Title: Unregularized limit of stochastic gradient method for Wasserstein distributionally robust optimization
- Authors: Tam Le,
- Abstract summary: Distributionally robust optimization offers a compelling framework for model fitting in machine learning.<n>We investigate the regularized problem where entropic smoothing yields a sampling-based approximation of the original objective.
- Score: 8.784017987697688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributionally robust optimization offers a compelling framework for model fitting in machine learning, as it systematically accounts for data uncertainty. Focusing on Wasserstein distributionally robust optimization, we investigate the regularized problem where entropic smoothing yields a sampling-based approximation of the original objective. We establish the convergence of the approximate gradient over a compact set, leading to the concentration of the regularized problem critical points onto the original problem critical set as regularization diminishes and the number of approximation samples increases. Finally, we deduce convergence guarantees for a projected stochastic gradient method. Our analysis covers a general machine learning situation with an unbounded sample space and mixed continuous-discrete data.
Related papers
- Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
The paper establishes a low sample complexity to obtain a high probability guarantee on the convergence of the proposed method.
A subroutine is developed to solve the proximal subproblem, which also serves as a novel technique for variance reduction.
arXiv Detail & Related papers (2024-02-14T07:34:22Z) - An Inexact Halpern Iteration with Application to Distributionally Robust Optimization [8.722877733571796]
We show that by choosing the inexactness appropriately, the inexact schemes admit an $O(k-1) convergence rate in terms of the (expected) residue norm.<n>We demonstrate how the proposed methods can be applied for solving two classes of data-driven distributionally robust optimization problems.
arXiv Detail & Related papers (2024-02-08T20:12:47Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
We discuss application of iterative quadratic optimization routines to the problem of sparse signal recovery from noisy observation.
We show how one can straightforwardly enhance reliability of the corresponding solution by using Median-of-Means like techniques.
arXiv Detail & Related papers (2020-06-11T12:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.