Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
- URL: http://arxiv.org/abs/2506.04970v1
- Date: Thu, 05 Jun 2025 12:43:11 GMT
- Title: Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
- Authors: Mélisande Teng, Arthur Ouaknine, Etienne Laliberté, Yoshua Bengio, David Rolnick, Hugo Larochelle,
- Abstract summary: Current monitoring methods involve ground measurements, requiring extensive cost, time and labor.<n>Drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale.<n>We compare methods leveraging Segment Anything Model (SAM) for the task of automatic tree crown instance segmentation in high resolution drone imagery.<n>We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery.
- Score: 68.69685477556682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
Related papers
- Zero-Shot Tree Detection and Segmentation from Aerial Forest Imagery [1.2770132985501168]
Current RGB tree segmentation methods rely on training specialized machine learning models with labeled tree datasets.<n>In this paper, we investigate the efficacy of using a state-of-the-art image segmentation model, Segment Anything Model 2 (SAM2) in a zero-shot manner for individual tree detection and segmentation.<n>Our results suggest that SAM2 not only has impressive generalization capabilities, but also can form a natural synergy with specialized methods trained on in-domain labeled data.
arXiv Detail & Related papers (2025-06-03T17:44:43Z) - Estimating the Diameter at Breast Height of Trees in a Forest With a Single 360 Camera [52.85399274741336]
Forest inventories rely on accurate measurements of the diameter at breast height (DBH) for ecological monitoring, resource management, and carbon accounting.<n>While LiDAR-based techniques can achieve centimeter-level precision, they are cost-prohibitive and operationally complex.<n>We present a low-cost alternative that only needs a consumer-grade 360 video camera.
arXiv Detail & Related papers (2025-05-06T01:09:07Z) - Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery [68.69685477556682]
Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour.<n>Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery.<n>We compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations.<n>We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further.
arXiv Detail & Related papers (2025-03-26T03:45:36Z) - Plantation Monitoring Using Drone Images: A Dataset and Performance Review [2.4936576553283287]
Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields.<n>Existing methods of automated plantation monitoring are mostly based on satellite images.<n>We propose an automated system for plantation health monitoring using drone images.
arXiv Detail & Related papers (2025-02-12T09:21:16Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Fantastic Animals and Where to Find Them: Segment Any Marine Animal with Dual SAM [62.85895749882285]
Marine Animal (MAS) involves segmenting animals within marine environments.
We propose a novel feature learning framework, named Dual-SAM for high-performance MAS.
Our proposed method achieves state-of-the-art performances on five widely-used MAS datasets.
arXiv Detail & Related papers (2024-04-07T15:34:40Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
We propose textbfSAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters.
We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection.
arXiv Detail & Related papers (2023-04-18T17:38:54Z) - Individual Tree Detection and Crown Delineation with 3D Information from
Multi-view Satellite Images [5.185018253122575]
Individual tree detection and crown delineation (ITDD) are critical in forest inventory management.
We propose a ITDD method using the orthophoto and digital surface model (DSM) derived from the multi-view satellite data.
Experiments against manually marked tree plots on three representative regions have demonstrated promising results.
arXiv Detail & Related papers (2021-07-01T16:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.