Automatic Robustness Stress Testing of LLMs as Mathematical Problem Solvers
- URL: http://arxiv.org/abs/2506.05038v1
- Date: Thu, 05 Jun 2025 13:42:39 GMT
- Title: Automatic Robustness Stress Testing of LLMs as Mathematical Problem Solvers
- Authors: Yutao Hou, Zeguan Xiao, Fei Yu, Yihan Jiang, Xuetao Wei, Hailiang Huang, Yun Chen, Guanhua Chen,
- Abstract summary: Large language models (LLMs) have achieved distinguished performance on various reasoning-intensive tasks.<n>LLMs might still face the challenges of robustness issues and fail unexpectedly in some simple reasoning tasks.<n>We propose a novel framework, Automatic Robustness Checker (AR-Checker), to generate mathematical problem variants that maintain the semantic meanings of the original one but might fail the LLMs.
- Score: 13.40970017743291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved distinguished performance on various reasoning-intensive tasks. However, LLMs might still face the challenges of robustness issues and fail unexpectedly in some simple reasoning tasks. Previous works evaluate the LLM robustness with hand-crafted templates or a limited set of perturbation rules, indicating potential data contamination in pre-training or fine-tuning datasets. In this work, inspired by stress testing in software engineering, we propose a novel framework, Automatic Robustness Checker (AR-Checker), to generate mathematical problem variants that maintain the semantic meanings of the original one but might fail the LLMs. The AR-Checker framework generates mathematical problem variants through multi-round parallel streams of LLM-based rewriting and verification. Our framework can generate benchmark variants dynamically for each LLM, thus minimizing the risk of data contamination. Experiments on GSM8K and MATH-500 demonstrate the strong performance of AR-Checker on mathematical tasks. We also evaluate AR-Checker on benchmarks beyond mathematics, including MMLU, MMLU-Pro, and CommonsenseQA, where it also achieves strong performance, further proving the effectiveness of AR-Checker.
Related papers
- WarriorMath: Enhancing the Mathematical Ability of Large Language Models with a Defect-aware Framework [42.74246647841103]
WarriorMath is a defect-aware framework for mathematical problem solving.<n>We employ multiple expert LLMs in a collaborative process to generate, critique, and refine problems.<n>In the training stage, we introduce a progressive learning framework that iteratively fine-tunes the model using increasingly challenging data tailored to its weaknesses.
arXiv Detail & Related papers (2025-08-02T07:45:12Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
We propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated Operations Research problem solving.<n>We show that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7% in accuracy.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.<n>LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.<n>Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - Benchmarking Large Language Models via Random Variables [40.65711363554025]
Recent studies have raised concerns about the reliability of current mathematical benchmarks.<n>We propose RV-Bench, a framework for Benchmarking large language models via Random Variables in mathematical reasoning.<n>Our findings suggest that LLMs exhibit an imbalance in proficiency between encountered and "unseen" data domains.
arXiv Detail & Related papers (2025-01-20T23:41:22Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.<n>It is constructed using a dataset curated from 30 well-known GitHub repositories.<n>We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot
Relation Extractors [11.28397947587596]
Fine-tuning large language models (LLMs) on large-scale instruction-following datasets substantially improves their performance on a wide range of NLP tasks.
However, even advanced instruction-tuned LLMs still fail to outperform small LMs on relation extraction (RE)
We propose QA4RE, a framework that aligns RE with question answering (QA), a predominant task in instruction-tuning datasets.
arXiv Detail & Related papers (2023-05-18T17:48:03Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.