論文の概要: Practical Manipulation Model for Robust Deepfake Detection
- arxiv url: http://arxiv.org/abs/2506.05119v1
- Date: Thu, 05 Jun 2025 15:06:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.772073
- Title: Practical Manipulation Model for Robust Deepfake Detection
- Title(参考訳): ロバストディープフェイク検出のための実用的マニピュレーションモデル
- Authors: Benedikt Hopf, Radu Timofte,
- Abstract要約: 画像超解像領域において,より現実的な劣化モデルを構築した。
擬似フェイクの空間を、ポアソンブレンディング、より多様なマスク、ジェネレータアーティファクト、およびイントラクタを用いて拡張する。
DFDCデータセットとDFDCPデータセットでは、それぞれ3.51%$と6.21%$AUCが明らかに増加した。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern deepfake detection models have achieved strong performance even on the challenging cross-dataset task. However, detection performance under non-ideal conditions remains very unstable, limiting success on some benchmark datasets and making it easy to circumvent detection. Inspired by the move to a more real-world degradation model in the area of image super-resolution, we have developed a Practical Manipulation Model (PMM) that covers a larger set of possible forgeries. We extend the space of pseudo-fakes by using Poisson blending, more diverse masks, generator artifacts, and distractors. Additionally, we improve the detectors' generality and robustness by adding strong degradations to the training images. We demonstrate that these changes not only significantly enhance the model's robustness to common image degradations but also improve performance on standard benchmark datasets. Specifically, we show clear increases of $3.51\%$ and $6.21\%$ AUC on the DFDC and DFDCP datasets, respectively, over the s-o-t-a LAA backbone. Furthermore, we highlight the lack of robustness in previous detectors and our improvements in this regard. Code can be found at https://github.com/BenediktHopf/PMM
- Abstract(参考訳): 最新のディープフェイク検出モデルは、挑戦的なクロスデータセットタスクでも強力なパフォーマンスを実現している。
しかしながら、非理想的条件下での検出性能は非常に不安定であり、いくつかのベンチマークデータセットの成功を制限し、検出を回避しやすくしている。
画像超解像領域におけるより現実的な劣化モデルへの移行に触発されて,より大規模な偽造の可能性をカバーする実用的マニピュレーションモデル(PMM)を開発した。
擬似フェイクの空間を、ポアソンブレンディング、より多様なマスク、ジェネレータアーティファクト、およびイントラクタを用いて拡張する。
さらに,トレーニング画像に強い劣化を加えることにより,検出器の汎用性と堅牢性を向上させる。
これらの変更は、一般的な画像劣化に対するモデルの堅牢性を著しく向上するだけでなく、標準ベンチマークデータセットのパフォーマンスも向上することを示した。
具体的には、DFDCデータセットとDFDCPデータセットでそれぞれ3.51\%$と6.21\%$AUCが、LAAバックボーンのs-o-t-aで顕著に増加することを示す。
さらに,従来の検出器のロバストさの欠如と,この点における改良点を強調した。
コードはhttps://github.com/BenediktHopf/PMMで見ることができる。
関連論文リスト
- RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splattingは、ノベルビュー合成と3Dモデリングにおけるリアルタイム、フォトリアリスティックレンダリングにおいて大きな注目を集めている。
既存の手法は、過渡的なオブジェクトに影響されたシーンを正確にモデル化するのに苦労し、描画された画像のアーティファクトに繋がる。
2つの重要な設計に基づく堅牢なソリューションであるRobustSplatを提案する。
論文 参考訳(メタデータ) (2025-06-03T11:13:48Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection [16.21235742118949]
本稿では,よく訓練された視覚言語モデル(VLM)を一般深度検出に活用する手法を提案する。
入力摂動によってモデル予測を操作するモデル再プログラミングパラダイムにより,本手法はトレーニング済みのVLMモデルを再プログラムすることができる。
いくつかの人気のあるベンチマークデータセットの実験では、ディープフェイク検出のクロスデータセットとクロスマニピュレーションのパフォーマンスが大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-09-04T12:46:30Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - Gen2Det: Generate to Detect [42.13657805295144]
Gen2Detは、オブジェクト検出のための合成トレーニングデータを無償で作成するためのシンプルなモジュールパイプラインです。
合成データに加えて、Gen2Detは画像レベルのフィルタリング、インスタンスレベルのフィルタリング、より良いトレーニングレシピなど、生成されたデータを最大限に活用するための一連のテクニックを提案している。
論文 参考訳(メタデータ) (2023-12-07T18:59:58Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。