Tight analyses of first-order methods with error feedback
- URL: http://arxiv.org/abs/2506.05271v1
- Date: Thu, 05 Jun 2025 17:30:18 GMT
- Title: Tight analyses of first-order methods with error feedback
- Authors: Daniel Berg Thomsen, Adrien Taylor, Aymeric Dieuleveut,
- Abstract summary: Communication between agents often constitutes a major computational bottleneck in distributed learning.<n>One of the most common mitigation strategies is to compress the information exchanged.<n>Error feedback schemes were introduced to counteract the degradation in convergence associated with compressed communication.
- Score: 8.759583928626702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication between agents often constitutes a major computational bottleneck in distributed learning. One of the most common mitigation strategies is to compress the information exchanged, thereby reducing communication overhead. To counteract the degradation in convergence associated with compressed communication, error feedback schemes -- most notably $\mathrm{EF}$ and $\mathrm{EF}^{21}$ -- were introduced. In this work, we provide a tight analysis of both of these methods. Specifically, we find the Lyapunov function that yields the best possible convergence rate for each method -- with matching lower bounds. This principled approach yields sharp performance guarantees and enables a rigorous, apples-to-apples comparison between $\mathrm{EF}$, $\mathrm{EF}^{21}$, and compressed gradient descent. Our analysis is carried out in a simplified yet representative setting, which allows for clean theoretical insights and fair comparison of the underlying mechanisms.
Related papers
- Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
We analyze $f$-divergence-regularized offline policy learning.<n>For reverse Kullback-Leibler (KL) divergence, we give the first $tildeO(epsilon-1)$ sample complexity under single-policy concentrability.<n>We extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - A Unified Analysis for Finite Weight Averaging [50.75116992029417]
Averaging iterations of Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA)
In this paper, we generalize LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization.
arXiv Detail & Related papers (2024-11-20T10:08:22Z) - Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - Compressed Federated Reinforcement Learning with a Generative Model [11.074080383657453]
Reinforcement learning has recently gained unprecedented popularity, yet it still grapples with sample inefficiency.
Addressing this challenge, federated reinforcement learning (FedRL) has emerged, wherein agents collaboratively learn a single policy by aggregating local estimations.
We propose CompFedRL, a communication-efficient FedRL approach incorporating both textitperiodic aggregation and (direct/error-feedback) compression mechanisms.
arXiv Detail & Related papers (2024-03-26T15:36:47Z) - Faster Convergence with Multiway Preferences [99.68922143784306]
We consider the sign-function-based comparison feedback model and analyze the convergence rates with batched and multiway comparisons.
Our work is the first to study the problem of convex optimization with multiway preferences and analyze the optimal convergence rates.
arXiv Detail & Related papers (2023-12-19T01:52:13Z) - Compressed and distributed least-squares regression: convergence rates
with applications to Federated Learning [9.31522898261934]
We investigate the impact of compression on gradient algorithms for machine learning.
We highlight differences in terms of convergence rates between several unbiased compression operators.
We extend our results to the case of federated learning.
arXiv Detail & Related papers (2023-08-02T18:02:00Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Distributed Methods with Absolute Compression and Error Compensation [1.52292571922932]
Communication compression is a powerful approach to alleviating this issue.
In this paper, we generalize the analysis of EC-SGD with absolute compression to the arbitrary sampling strategy.
Our rates improve upon the previously known ones in this setting.
arXiv Detail & Related papers (2022-03-04T15:41:14Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
We show the first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sampling.
Results on Open GymAI continuous control tasks.
arXiv Detail & Related papers (2022-02-28T15:16:23Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - Unified Analysis of Stochastic Gradient Methods for Composite Convex and
Smooth Optimization [15.82816385434718]
We present a unified theorem for the convergence analysis of gradient algorithms for minimizing a smooth and convex loss plus a convex regularizer.
We do this by extending the unified analysis of Gorbunov, Hanzely & Richt'arik ( 2020) and dropping the requirement that the loss function be strongly convex.
Our unified analysis applies to a host of existing algorithms such as proximal SGD, variance reduced methods, quantization and some coordinate descent type methods.
arXiv Detail & Related papers (2020-06-20T13:40:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.