Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels
- URL: http://arxiv.org/abs/2506.05312v2
- Date: Thu, 26 Jun 2025 14:30:41 GMT
- Title: Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels
- Authors: Olaf Dünkel, Thomas Wimmer, Christian Theobalt, Christian Rupprecht, Adam Kortylewski,
- Abstract summary: We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling.<n>Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining.<n>While reducing the need for dataset specific annotations, we set a new state-of-the-art on SPair-71k by over 4% absolute gain.
- Score: 69.58063088519852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset specific annotations compared to prior work, we set a new state-of-the-art on SPair-71k by over 4% absolute gain and by over 7% against methods with similar supervision requirements. The generality of our proposed approach simplifies extension of training to other data sources, which we demonstrate in our experiments.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Improving Semantic Correspondence with Viewpoint-Guided Spherical Maps [39.00415825387414]
We propose a new approach for semantic correspondence estimation that supplements discriminative features with 3D understanding via a weak geometric spherical prior.
Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training.
We present results on the challenging SPair-71k dataset, where our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories.
arXiv Detail & Related papers (2023-12-20T17:35:24Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly
Supervised 3D Visual Grounding [58.924180772480504]
3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query.
We propose to leverage weakly supervised annotations to learn the 3D visual grounding model.
We design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner.
arXiv Detail & Related papers (2023-07-18T13:49:49Z) - You Only Need One Thing One Click: Self-Training for Weakly Supervised
3D Scene Understanding [107.06117227661204]
We propose One Thing One Click'', meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our model can be compatible to 3D instance segmentation equipped with a point-clustering strategy.
arXiv Detail & Related papers (2023-03-26T13:57:00Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
We propose "One Thing One Click," meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our results are also comparable to those of the fully supervised counterparts.
arXiv Detail & Related papers (2021-04-06T02:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.