Improving Semantic Correspondence with Viewpoint-Guided Spherical Maps
- URL: http://arxiv.org/abs/2312.13216v2
- Date: Fri, 5 Jul 2024 16:07:13 GMT
- Title: Improving Semantic Correspondence with Viewpoint-Guided Spherical Maps
- Authors: Octave Mariotti, Oisin Mac Aodha, Hakan Bilen,
- Abstract summary: We propose a new approach for semantic correspondence estimation that supplements discriminative features with 3D understanding via a weak geometric spherical prior.
Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training.
We present results on the challenging SPair-71k dataset, where our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories.
- Score: 39.00415825387414
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.
Related papers
- Diffusion-Driven Self-Supervised Learning for Shape Reconstruction and Pose Estimation [26.982199143972835]
We introduce a diffusion-driven self-supervised network for multi-object shape reconstruction and categorical pose estimation.
Our method significantly outperforms state-of-the-art self-supervised category-level baselines and even surpasses some fully-supervised instance-level and category-level methods.
arXiv Detail & Related papers (2024-03-19T13:43:27Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics.
We propose to utilize both geometric and semantic features obtained from a pre-trained foundation model.
This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance.
arXiv Detail & Related papers (2023-11-23T02:35:38Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
We present an approach to estimating the continuous 6-DoF pose of an object from a single RGB image.
The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model.
We show that our approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios.
arXiv Detail & Related papers (2022-04-12T15:03:51Z) - Leveraging Equivariant Features for Absolute Pose Regression [9.30597356471664]
We show that a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space.
We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations.
arXiv Detail & Related papers (2022-04-05T12:44:20Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant.
Much of the recent attention has shifted towards semi and (or) weakly supervised learning.
We propose to impose multi-view geometrical constraints by means of a differentiable triangulation and to use it as form of self-supervision during training when no labels are available.
arXiv Detail & Related papers (2022-03-29T19:11:54Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data.
We optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis.
Our method performs competitively on seven public graph datasets.
arXiv Detail & Related papers (2021-06-23T15:55:47Z) - Semantically-Guided Representation Learning for Self-Supervised
Monocular Depth [40.49380547487908]
We propose a new architecture leveraging fixed pretrained semantic segmentation networks to guide self-supervised representation learning.
Our method improves upon the state of the art for self-supervised monocular depth prediction over all pixels, fine-grained details, and per semantic categories.
arXiv Detail & Related papers (2020-02-27T18:40:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.