VideoMolmo: Spatio-Temporal Grounding Meets Pointing
- URL: http://arxiv.org/abs/2506.05336v1
- Date: Thu, 05 Jun 2025 17:59:29 GMT
- Title: VideoMolmo: Spatio-Temporal Grounding Meets Pointing
- Authors: Ghazi Shazan Ahmad, Ahmed Heakl, Hanan Gani, Abdelrahman Shaker, Zhiqiang Shen, Ranjay Krishna, Fahad Shahbaz Khan, Salman Khan,
- Abstract summary: VideoMolmo is a model tailored for fine-grained pointing of video sequences.<n>A novel temporal mask fusion employs SAM2 for bidirectional point propagation.<n>To evaluate the generalization of VideoMolmo, we introduce VPoMolS-temporal, a challenging out-of-distribution benchmark spanning five real-world scenarios.
- Score: 73.25506085339252
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.
Related papers
- Iterative Zoom-In: Temporal Interval Exploration for Long Video Understanding [18.027290155746112]
Temporal Search is a training-free framework that enables MLLMs to explore temporal regions for improved long video understanding iteratively.<n>It is based on a key observation: the model's generation confidence across different temporal intervals is highly correlated with prediction accuracy.<n>It refines the focus of the model by iteratively shifting attention to more fine-grained temporal intervals, improving its understanding of long videos.
arXiv Detail & Related papers (2025-06-28T15:24:05Z) - Universal Video Temporal Grounding with Generative Multi-modal Large Language Models [59.781211641591405]
This paper presents a computational model for universal video temporal grounding, which accurately localizes temporal moments in videos based on natural language queries.<n>We propose UniTime, a robust and universal video grounding model leveraging the strong vision-language understanding capabilities of generative Multi-modal Large Language Models (MLLMs)<n>Our model effectively handles videos of diverse views, genres, and lengths while comprehending complex language queries.
arXiv Detail & Related papers (2025-06-23T17:53:18Z) - SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability [58.46310813774538]
Large language models (LMLMs) have made remarkable progress in either temporal or spatial localization.<n>However they struggle to perform-temporal video grounding.<n>This limitation stems from two major challenges.<n>We introduce SpaceLM, a MLLMVL endowed with temporal-temporal video grounding.
arXiv Detail & Related papers (2025-03-18T07:40:36Z) - Towards Fine-Grained Video Question Answering [17.582244704442747]
This paper introduces the Multi-Object Multi-Actor Question Answering (MOMA-QA) dataset.<n>With ground truth scene graphs and temporal interval annotations, MOMA-QA is ideal for developing models for fine-grained video understanding.<n>We present a novel video-language model, SGVLM, which incorporates a scene graph predictor, an efficient frame retriever, and a pre-trained large language model for temporal localization and fine-grained relationship understanding.
arXiv Detail & Related papers (2025-03-10T01:02:01Z) - ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations [33.74746234704817]
Video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description.<n>This is challenging as it involves deep vision-level understanding, pixel-level dense prediction andtemporal reasoning.<n>We propose bfReferDINO RVOS that inherits region-level vision-text alignment from foundational visual grounding models.
arXiv Detail & Related papers (2025-01-24T16:24:15Z) - VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos [58.765796160750504]
VideoGLaMM is a new model for fine-grained pixel-level grounding in videos based on user-provided textual inputs.<n>The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions.<n> Experimental results show that our model consistently outperforms existing approaches across all three tasks.
arXiv Detail & Related papers (2024-11-07T17:59:27Z) - Understanding Road Layout from Videos as a Whole [82.30800791500869]
We formulate it as a top-view road attributes prediction problem and our goal is to predict these attributes for each frame both accurately and consistently.
We exploit the following three novel aspects: leveraging camera motions in videos, including context cuesand incorporating long-term video information.
arXiv Detail & Related papers (2020-07-02T00:59:15Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
We present HERO, a novel framework for large-scale video+language omni-representation learning.
HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer.
HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions.
arXiv Detail & Related papers (2020-05-01T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.