ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations
- URL: http://arxiv.org/abs/2501.14607v2
- Date: Mon, 30 Jun 2025 16:09:19 GMT
- Title: ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations
- Authors: Tianming Liang, Kun-Yu Lin, Chaolei Tan, Jianguo Zhang, Wei-Shi Zheng, Jian-Fang Hu,
- Abstract summary: Video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description.<n>This is challenging as it involves deep vision-level understanding, pixel-level dense prediction andtemporal reasoning.<n>We propose bfReferDINO RVOS that inherits region-level vision-text alignment from foundational visual grounding models.
- Score: 33.74746234704817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This is challenging as it involves deep vision-language understanding, pixel-level dense prediction and spatiotemporal reasoning. Despite notable progress in recent years, existing methods still exhibit a noticeable gap when considering all these aspects. In this work, we propose \textbf{ReferDINO}, a strong RVOS model that inherits region-level vision-language alignment from foundational visual grounding models, and is further endowed with pixel-level dense perception and cross-modal spatiotemporal reasoning. In detail, ReferDINO integrates two key components: 1) a grounding-guided deformable mask decoder that utilizes location prediction to progressively guide mask prediction through differentiable deformation mechanisms; 2) an object-consistent temporal enhancer that injects pretrained time-varying text features into inter-frame interaction to capture object-aware dynamic changes. Moreover, a confidence-aware query pruning strategy is designed to accelerate object decoding without compromising model performance. Extensive experimental results on five benchmarks demonstrate that our ReferDINO significantly outperforms previous methods (e.g., +3.9% (\mathcal{J}&\mathcal{F}) on Ref-YouTube-VOS) with real-time inference speed (51 FPS).
Related papers
- VideoMolmo: Spatio-Temporal Grounding Meets Pointing [66.19964563104385]
VideoMolmo is a model tailored for fine-grained pointing of video sequences.<n>A novel temporal mask fusion employs SAM2 for bidirectional point propagation.<n>To evaluate the generalization of VideoMolmo, we introduce VPoMolS-temporal, a challenging out-of-distribution benchmark spanning five real-world scenarios.
arXiv Detail & Related papers (2025-06-05T17:59:29Z) - 4th PVUW MeViS 3rd Place Report: Sa2VA [105.88675577642204]
We show that with a simple modification to the test time inference method on stronger MLLMs, we can lead to stronger results on MeVIS.
In particular, we adopt the recent method Sa2VA, a unified model for dense grounded understanding of both images and videos.
arXiv Detail & Related papers (2025-04-01T07:06:47Z) - Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation [52.337472185022136]
We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description.<n>We propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation.<n>We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art consistency.
arXiv Detail & Related papers (2025-01-06T14:49:26Z) - SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
We propose a novel method to prompt large language models with in-context visual object vectors.
This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training.
Our experiments reveal that our method achieves competitive referring object classification and captioning performance.
arXiv Detail & Related papers (2024-06-02T21:36:31Z) - Efficient Long-Short Temporal Attention Network for Unsupervised Video
Object Segmentation [23.645412918420906]
Unsupervised Video Object (VOS) aims at identifying the contours of primary foreground objects in videos without any prior knowledge.
Previous methods do not fully use spatial-temporal context and fail to tackle this challenging task in real-time.
This motivates us to develop an efficient Long-Short Temporal Attention network (termed LSTA) for unsupervised VOS task from a holistic view.
arXiv Detail & Related papers (2023-09-21T01:09:46Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
We introduce an object-aware decoder for improving the performance of ego-centric representations on ego-centric videos.
We show that the model can act as a drop-in replacement for an ego-awareness video model to improve performance through visual-text grounding.
arXiv Detail & Related papers (2023-08-15T17:58:11Z) - Identity-Consistent Aggregation for Video Object Detection [21.295859014601334]
In Video Object Detection (VID), a common practice is to leverage the rich temporal contexts from the video to enhance the object representations in each frame.
We propose ClipVID, a VID model equipped with Identity-Consistent Aggregation layers specifically designed for mining fine-grained and identity-consistent temporal contexts.
Experiments demonstrate the superiority of our method: a state-of-the-art (SOTA) performance (84.7% mAP) on the ImageNet VID dataset while running at a speed about 7x faster (39.3 fps) than previous SOTAs.
arXiv Detail & Related papers (2023-08-15T12:30:22Z) - Learning Referring Video Object Segmentation from Weak Annotation [78.45828085350936]
Referring video object segmentation (RVOS) is a task that aims to segment the target object in all video frames based on a sentence describing the object.
We propose a new annotation scheme that reduces the annotation effort by 8 times, while providing sufficient supervision for RVOS.
Our scheme only requires a mask for the frame where the object first appears and bounding boxes for the rest of the frames.
arXiv Detail & Related papers (2023-08-04T06:50:52Z) - Dense Video Object Captioning from Disjoint Supervision [77.47084982558101]
We propose a new task and model for dense video object captioning.
This task unifies spatial and temporal localization in video.
We show how our model improves upon a number of strong baselines for this new task.
arXiv Detail & Related papers (2023-06-20T17:57:23Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormer aims to segment object instances in a given video referred by a language expression in all video frames.
This work proposes several tricks to boost further, including cyclical learning rates, semi-supervised approach, and test-time augmentation inference.
The improved ReferFormer ranks 2nd place on CVPR2022 Referring Youtube-VOS Challenge.
arXiv Detail & Related papers (2022-06-24T02:15:06Z) - Exploring Motion and Appearance Information for Temporal Sentence
Grounding [52.01687915910648]
We propose a Motion-Appearance Reasoning Network (MARN) to solve temporal sentence grounding.
We develop separate motion and appearance branches to learn motion-guided and appearance-guided object relations.
Our proposed MARN significantly outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-01-03T02:44:18Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Rethinking Cross-modal Interaction from a Top-down Perspective for
Referring Video Object Segmentation [140.4291169276062]
Referring video object segmentation (RVOS) aims to segment video objects with the guidance of natural language reference.
Previous methods typically tackle RVOS through directly grounding linguistic reference over the image lattice.
In this work, we put forward a two-stage, top-down RVOS solution. First, an exhaustive set of object tracklets is constructed by propagating object masks detected from several sampled frames to the entire video.
Second, a Transformer-based tracklet-language grounding module is proposed, which models instance-level visual relations and cross-modal interactions simultaneously and efficiently.
arXiv Detail & Related papers (2021-06-02T10:26:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.