論文の概要: AI-Driven Dynamic Firewall Optimization Using Reinforcement Learning for Anomaly Detection and Prevention
- arxiv url: http://arxiv.org/abs/2506.05356v1
- Date: Wed, 21 May 2025 17:05:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 03:13:18.997787
- Title: AI-Driven Dynamic Firewall Optimization Using Reinforcement Learning for Anomaly Detection and Prevention
- Title(参考訳): 強化学習を用いたAI駆動動的ファイアウォール最適化による異常検出・防止
- Authors: Taimoor Ahmad,
- Abstract要約: 本稿では,新しいAI駆動動的ファイアウォール最適化フレームワークを提案する。
進化するネットワーク脅威に対応するために、自動でファイアウォールルールを適応し、更新する。
その結果、検出精度、偽陽性の低減、ルール更新のレイテンシが大幅に改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing complexity of cyber threats has rendered static firewalls increasingly ineffective for dynamic, real-time intrusion prevention. This paper proposes a novel AI-driven dynamic firewall optimization framework that leverages deep reinforcement learning (DRL) to autonomously adapt and update firewall rules in response to evolving network threats. Our system employs a Markov Decision Process (MDP) formulation, where the RL agent observes network states, detects anomalies using a hybrid LSTM-CNN model, and dynamically modifies firewall configurations to mitigate risks. We train and evaluate our framework on the NSL-KDD and CIC-IDS2017 datasets using a simulated software-defined network environment. Results demonstrate significant improvements in detection accuracy, false positive reduction, and rule update latency when compared to traditional signature- and behavior-based firewalls. The proposed method provides a scalable, autonomous solution for enhancing network resilience against complex attack vectors in both enterprise and critical infrastructure settings.
- Abstract(参考訳): サイバー脅威の増大する複雑さは、静的ファイアウォールを動的でリアルタイムな侵入防止に不効率にしている。
本稿では、深層強化学習(DRL)を利用して、進化するネットワーク脅威に対応して、ファイアウォールルールを自律的に適応し、更新する、AI駆動動的ファイアウォール最適化フレームワークを提案する。
本稿では,RLエージェントがネットワーク状態を観測し,LSTM-CNNモデルを用いて異常を検出し,リスクを軽減するためにファイアウォール構成を動的に修正する,MDP(Markov Decision Process)の定式化を行う。
我々は、シミュレーションされたソフトウェア定義ネットワーク環境を用いて、NSL-KDDおよびCIC-IDS2017データセット上でフレームワークを訓練し、評価する。
その結果,従来のシグネチャベースファイアウォールや行動ベースファイアウォールと比較して,検出精度,偽陽性低減,ルール更新レイテンシが大幅に向上した。
提案手法は,エンタープライズおよびクリティカルインフラストラクチャの両方において,複雑な攻撃ベクトルに対するネットワークレジリエンスを向上させるスケーラブルで自律的なソリューションを提供する。
関連論文リスト
- Intrusion Detection System Using Deep Learning for Network Security [0.6554326244334868]
本稿では,深層学習技術に基づくIDSモデルの実験的評価を提案する。
ネットワークトラフィックを悪意のあるカテゴリと良心的なカテゴリに分類することに注力する。
テストされたモデルのうち、最高は96%の精度を達成した。
論文 参考訳(メタデータ) (2025-05-09T06:04:58Z) - Adaptive Cybersecurity: Dynamically Retrainable Firewalls for Real-Time Network Protection [4.169915659794567]
本研究は「動的にリトレーニング可能なファイアウォール」を紹介する。
トラフィックを検査する静的ルールに依存する従来のファイアウォールとは異なり、これらの先進的なシステムは機械学習アルゴリズムを活用して、ネットワークトラフィックパターンを動的に分析し、脅威を特定する。
また、パフォーマンスの改善、レイテンシの削減、リソース利用の最適化、Zero Trustや混在環境といった現在の概念とのインテグレーションの問題にも対処する戦略についても論じている。
論文 参考訳(メタデータ) (2025-01-14T00:04:35Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
本稿では,GANをベースとした新たな生成逆ネットワーク(Generative Adversarial Network, GAN)を提案する。
GANベースの目的は、DNNベースの分類器に入力する前に、敵の攻撃例を排除することである。
シミュレーションの結果,DNNをベースとしたAMCの精度が約81%に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-29T22:30:32Z) - Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network [75.1236305913734]
ディープニューラルネットワークにおける動的に認識される敵攻撃問題について検討する。
ほとんどの既存の敵攻撃アルゴリズムは基本的な前提の下で設計されており、ネットワークアーキテクチャは攻撃プロセス全体を通して固定されている。
本稿では,LGM(Leaded Gradient Method)を提案する。
論文 参考訳(メタデータ) (2021-12-17T10:53:35Z) - A Novel Online Incremental Learning Intrusion Prevention System [2.5234156040689237]
本稿では,自己組織型インクリメンタルニューラルネットワークとサポートベクトルマシンを併用したネットワーク侵入防止システムを提案する。
提案システムは,その構造上,シグネチャやルールに依存しないセキュリティソリューションを提供するとともに,既知の攻撃や未知の攻撃を高精度にリアルタイムに軽減することができる。
論文 参考訳(メタデータ) (2021-09-20T13:30:11Z) - Automated Adversary Emulation for Cyber-Physical Systems via
Reinforcement Learning [4.763175424744536]
我々は,サイバー物理システムに対する敵エミュレーションに対するドメイン認識の自動化手法を開発した。
我々は、マルコフ決定プロセス(MDP)モデルを定式化し、ハイブリッドアタックグラフ上で最適なアタックシーケンスを決定する。
モデルベースおよびモデルフリー強化学習(RL)法を用いて,離散連続型MDPをトラクタブルな方法で解く。
論文 参考訳(メタデータ) (2020-11-09T18:44:29Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
対戦型トレーニングモデルの堅牢性を改善するための枠組みを提案する。
共学習のパラメータモデルの重み付けにより、提案するフレームワークは、更新方向に対するロバスト性とステップの適応性を一貫して改善する。
論文 参考訳(メタデータ) (2020-04-25T20:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。