PCEvolve: Private Contrastive Evolution for Synthetic Dataset Generation via Few-Shot Private Data and Generative APIs
- URL: http://arxiv.org/abs/2506.05407v1
- Date: Wed, 04 Jun 2025 13:33:06 GMT
- Title: PCEvolve: Private Contrastive Evolution for Synthetic Dataset Generation via Few-Shot Private Data and Generative APIs
- Authors: Jianqing Zhang, Yang Liu, Jie Fu, Yang Hua, Tianyuan Zou, Jian Cao, Qiang Yang,
- Abstract summary: Private Evolution (PE) algorithm generates Differential Privacy (DP) synthetic images using diffusion model APIs.<n>In practice, the few-shot private data challenge is particularly prevalent in specialized domains like healthcare and industry.<n>We propose a novel API-assisted algorithm, Private Contrastive Evolution (PCEvolve), which iteratively mines inherent inter-class contrastive relationships in few-shot private data.
- Score: 39.108700932535754
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of generative APIs has fueled interest in privacy-preserving synthetic data generation. While the Private Evolution (PE) algorithm generates Differential Privacy (DP) synthetic images using diffusion model APIs, it struggles with few-shot private data due to the limitations of its DP-protected similarity voting approach. In practice, the few-shot private data challenge is particularly prevalent in specialized domains like healthcare and industry. To address this challenge, we propose a novel API-assisted algorithm, Private Contrastive Evolution (PCEvolve), which iteratively mines inherent inter-class contrastive relationships in few-shot private data beyond individual data points and seamlessly integrates them into an adapted Exponential Mechanism (EM) to optimize DP's utility in an evolution loop. We conduct extensive experiments on four specialized datasets, demonstrating that PCEvolve outperforms PE and other API-assisted baselines. These results highlight the potential of leveraging API access with private data for quality evaluation, enabling the generation of high-quality DP synthetic images and paving the way for more accessible and effective privacy-preserving generative API applications. Our code is available at https://github.com/TsingZ0/PCEvolve.
Related papers
- Improving Noise Efficiency in Privacy-preserving Dataset Distillation [59.57846442477106]
We introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality.<n>On CIFAR-10, our method achieves a textbf10.0% improvement with 50 images per class and textbf8.3% increase with just textbfone-fifth the distilled set size of previous state-of-the-art methods.
arXiv Detail & Related papers (2025-08-03T13:15:52Z) - Differentially Private Synthetic Data Release for Topics API Outputs [63.79476766779742]
We focus on one Privacy-Preserving Ads API: the Topics API, part of Google Chrome's Privacy Sandbox.<n>We generate a differentially-private dataset that closely matches the re-identification risk properties of the real Topics API data.<n>We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset.
arXiv Detail & Related papers (2025-06-30T13:46:57Z) - Differentially Private Synthetic Data via APIs 3: Using Simulators Instead of Foundation Model [17.92638160807867]
Differentially private (DP) synthetic data has become a key tool for unlocking the value of private data without compromising privacy.<n>Private Evolution (PE) has emerged as a promising method for generating DP synthetic data.<n>We show that PE framework is sufficiently general to allow APIs beyond foundation models.
arXiv Detail & Related papers (2025-02-08T09:50:30Z) - Differentially Private Non Parametric Copulas: Generating synthetic data with non parametric copulas under privacy guarantees [0.0]
This work focuses on enhancing a non-parametric co-pula-based synthetic data generation model, DPNPC, by incorporating Differential Privacy.
We compare DPNPC with three other models (PrivBayes, DP-Copula, and DP-Histogram) across three public datasets, evaluating privacy, utility, and execution time.
arXiv Detail & Related papers (2024-09-27T10:18:14Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - Differentially Private Synthetic Data via Foundation Model APIs 2: Text [56.13240830670327]
A lot of high-quality text data generated in the real world is private and cannot be shared or used freely due to privacy concerns.
We propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text.
Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines.
arXiv Detail & Related papers (2024-03-04T05:57:50Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Differentially Private Synthetic Data via Foundation Model APIs 1: Images [29.27468374365625]
We present a new framework called Private Evolution (PE) to solve this problem.<n>PE can match even state-of-the-art (SOTA) methods without any model training.<n>For example, on CIFAR10 we achieve FID = 7.9 with privacy cost epsilon = 0.67, significantly improving the previous SOTA from epsilon = 32.
arXiv Detail & Related papers (2023-05-24T23:47:26Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.