論文の概要: Coordinated Robustness Evaluation Framework for Vision-Language Models
- arxiv url: http://arxiv.org/abs/2506.05429v1
- Date: Thu, 05 Jun 2025 08:09:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.155847
- Title: Coordinated Robustness Evaluation Framework for Vision-Language Models
- Title(参考訳): 視覚言語モデルのための協調ロバストネス評価フレームワーク
- Authors: Ashwin Ramesh Babu, Sajad Mousavi, Vineet Gundecha, Sahand Ghorbanpour, Avisek Naug, Antonio Guillen, Ricardo Luna Gutierrez, Soumyendu Sarkar,
- Abstract要約: 我々は、画像とテキストの両方を入力とし、共同表現を生成する一般的な代理モデルを訓練する。
この協調攻撃戦略は、視覚的質問と回答と視覚的推論データセットに基づいて評価される。
- 参考スコア(独自算出の注目度): 4.0196072781228285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models, which integrate computer vision and natural language processing capabilities, have demonstrated significant advancements in tasks such as image captioning and visual question and answering. However, similar to traditional models, they are susceptible to small perturbations, posing a challenge to their robustness, particularly in deployment scenarios. Evaluating the robustness of these models requires perturbations in both the vision and language modalities to learn their inter-modal dependencies. In this work, we train a generic surrogate model that can take both image and text as input and generate joint representation which is further used to generate adversarial perturbations for both the text and image modalities. This coordinated attack strategy is evaluated on the visual question and answering and visual reasoning datasets using various state-of-the-art vision-language models. Our results indicate that the proposed strategy outperforms other multi-modal attacks and single-modality attacks from the recent literature. Our results demonstrate their effectiveness in compromising the robustness of several state-of-the-art pre-trained multi-modal models such as instruct-BLIP, ViLT and others.
- Abstract(参考訳): コンピュータビジョンと自然言語処理機能を統合した視覚言語モデルは、画像キャプションや視覚的質問や回答といったタスクにおいて大きな進歩を見せている。
しかしながら、従来のモデルと同様、小さな摂動の影響を受けやすいため、特にデプロイメントシナリオにおいて、堅牢性に挑戦する可能性がある。
これらのモデルの堅牢性を評価するには、モーダル間の依存関係を学ぶために、ビジョンと言語モダリティの両方の摂動が必要である。
本研究では、画像とテキストの両方を入力とし、さらにテキストと画像の両モードの逆摂動を生成するジョイント表現を生成する汎用サロゲートモデルを訓練する。
この協調攻撃戦略は、様々な最先端の視覚言語モデルを用いて、視覚的疑問と答え、および視覚的推論データセットに基づいて評価される。
提案手法は,近年の文献によるマルチモーダル・アタックや単一モーダル・アタックよりも優れていた。
Instruct-BLIP, ViLTなど, 最先端の訓練済みマルチモーダルモデルのロバスト性を両立させる効果を示した。
関連論文リスト
- Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language Models [93.46875303598577]
視覚言語モデル(VLM)は、マルチモーダル情報処理において急速に進歩しているが、競合する信号の整合性は未解明のままである。
この研究は、VLMがASCIIアートをどう処理するかを考察する。
論文 参考訳(メタデータ) (2025-04-02T10:47:07Z) - Cross-Modal Consistency in Multimodal Large Language Models [33.229271701817616]
クロスモーダル一貫性という新しい概念を導入する。
実験結果から, GPT-4V内における視覚と言語モダリティの矛盾が明らかとなった。
我々の研究は、そのようなモデルの適切な利用に関する洞察と、その設計を強化するための潜在的な道のヒントを得る。
論文 参考訳(メタデータ) (2024-11-14T08:22:42Z) - Lost in Translation: When GPT-4V(ision) Can't See Eye to Eye with Text.
A Vision-Language-Consistency Analysis of VLLMs and Beyond [7.760124498553333]
視覚言語モデルが連続的・独立的に視覚と言語タスクを実行するかを検討する。
マルチモーダル設定において、異なるモーダル間の能力格差を定量化する体系的枠組みを導入する。
本稿では,視覚関連課題に挑戦するタスクのパフォーマンスを効果的に向上する手法である"Vision Description Prompting"を紹介する。
論文 参考訳(メタデータ) (2023-10-19T06:45:11Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
そこで本研究では,細粒度マルチモーダル表現を学習するためのマスク付きマルチモーダルモデリング手法を提案する。
本手法は,画像テキスト入力において共同マスキングを行い,暗黙的および明示的の両方のターゲットを結合してマスク信号の復元を行う。
本モデルは,画像テキスト検索,視覚的質問応答,視覚的推論,弱教師付き視覚的グラウンドティングなど,さまざまな下流視覚言語タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T06:31:15Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
最近のTransformerベースの大規模事前学習モデルは、視覚言語(V+L)研究に革命をもたらした。
VALUEは,マルチモーダル事前学習における内部動作の解明を目的とした,精密に設計された探索タスクのセットである。
主要な観察:事前訓練されたモデルは、推論中の画像よりもテキストに出席する傾向を示す。
論文 参考訳(メタデータ) (2020-05-15T01:06:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。