Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts
- URL: http://arxiv.org/abs/2506.05577v1
- Date: Thu, 05 Jun 2025 20:38:11 GMT
- Title: Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts
- Authors: Saptarshi Nath, Christos Peridis, Eseoghene Benjamin, Xinran Liu, Soheil Kolouri, Peter Kinnell, Zexin Li, Cong Liu, Shirin Dora, Andrea Soltoggio,
- Abstract summary: We introduce Modular Sharing and Composition in Collective Learning (MOSAIC)<n>MOSAIC is an agentic algorithm that allows multiple agents to independently solve different tasks.<n>Results on a set of RL benchmarks show that MOSAIC has a greater sample efficiency than isolated learners.
- Score: 12.471774408499817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agentic AI has gained significant interest as a research paradigm focused on autonomy, self-directed learning, and long-term reliability of decision making. Real-world agentic systems operate in decentralized settings on a large set of tasks or data distributions with constraints such as limited bandwidth, asynchronous execution, and the absence of a centralized model or even common objectives. We posit that exploiting previously learned skills, task similarities, and communication capabilities in a collective of agentic AI are challenging but essential elements to enabling scalability, open-endedness, and beneficial collaborative learning dynamics. In this paper, we introduce Modular Sharing and Composition in Collective Learning (MOSAIC), an agentic algorithm that allows multiple agents to independently solve different tasks while also identifying, sharing, and reusing useful machine-learned knowledge, without coordination, synchronization, or centralized control. MOSAIC combines three mechanisms: (1) modular policy composition via neural network masks, (2) cosine similarity estimation using Wasserstein embeddings for knowledge selection, and (3) asynchronous communication and policy integration. Results on a set of RL benchmarks show that MOSAIC has a greater sample efficiency than isolated learners, i.e., it learns significantly faster, and in some cases, finds solutions to tasks that cannot be solved by isolated learners. The collaborative learning and sharing dynamics are also observed to result in the emergence of ideal curricula of tasks, from easy to hard. These findings support the case for collaborative learning in agentic systems to achieve better and continuously evolving performance both at the individual and collective levels.
Related papers
- Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - Contextual Knowledge Sharing in Multi-Agent Reinforcement Learning with Decentralized Communication and Coordination [0.9776703963093367]
Multi-Agent Reinforcement Learning (Dec-MARL) has emerged as a pivotal approach for addressing complex tasks in dynamic environments.<n>This paper presents a novel Dec-MARL framework that integrates peer-to-peer communication and coordination, incorporating goal-awareness and time-awareness into the agents' knowledge-sharing processes.
arXiv Detail & Related papers (2025-01-26T22:49:50Z) - Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination [2.6590401523087634]
We propose Capability-Aware Shared Hypernetworks (CASH) for multi-robot teams.<n>CASH is a soft weight sharing architecture that uses hypernetworks to efficiently learn a flexible shared policy.<n>We show that CASH consistently outperforms baseline architectures in terms of performance and sample efficiency during both training and zero-shot generalization.
arXiv Detail & Related papers (2025-01-10T15:39:39Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gym is a framework enabling asynchronous, tripartite interaction among agents, humans, and task environments.<n>We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions.<n>Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance.
arXiv Detail & Related papers (2024-12-20T09:21:15Z) - Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning [13.918498667158119]
We introduce a novel cooperative MARL framework based on information selection and tacit learning.<n>We integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes.<n>Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-20T07:55:59Z) - Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.<n>We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.<n>We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - Distributed Continual Learning [12.18012293738896]
We introduce a mathematical framework capturing the essential aspects of distributed continual learning.<n>We identify three modes of information exchange: data instances, full model parameters, and modular (partial) model parameters.<n>Our findings reveal three key insights: sharing parameters is more efficient than sharing data as tasks become more complex.
arXiv Detail & Related papers (2024-05-23T21:24:26Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
Multi-Agent Systems (MAS) are critical for many applications requiring collaboration and coordination with humans.
One major challenge is the simultaneous learning and interaction of independent agents in dynamic environments.
We propose three variants of Multi-Agent IBL models (MAIBL)
We demonstrate that the MAIBL models exhibit faster learning and achieve better coordination in a dynamic CMOTP task with various settings of rewards compared to current MADRL models.
arXiv Detail & Related papers (2023-08-18T00:39:06Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.