Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models
- URL: http://arxiv.org/abs/2308.09219v1
- Date: Fri, 18 Aug 2023 00:39:06 GMT
- Title: Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models
- Authors: Thuy Ngoc Nguyen and Duy Nhat Phan and Cleotilde Gonzalez
- Abstract summary: Multi-Agent Systems (MAS) are critical for many applications requiring collaboration and coordination with humans.
One major challenge is the simultaneous learning and interaction of independent agents in dynamic environments.
We propose three variants of Multi-Agent IBL models (MAIBL)
We demonstrate that the MAIBL models exhibit faster learning and achieve better coordination in a dynamic CMOTP task with various settings of rewards compared to current MADRL models.
- Score: 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing effective Multi-Agent Systems (MAS) is critical for many
applications requiring collaboration and coordination with humans. Despite the
rapid advance of Multi-Agent Deep Reinforcement Learning (MADRL) in cooperative
MAS, one major challenge is the simultaneous learning and interaction of
independent agents in dynamic environments in the presence of stochastic
rewards. State-of-the-art MADRL models struggle to perform well in Coordinated
Multi-agent Object Transportation Problems (CMOTPs), wherein agents must
coordinate with each other and learn from stochastic rewards. In contrast,
humans often learn rapidly to adapt to nonstationary environments that require
coordination among people. In this paper, motivated by the demonstrated ability
of cognitive models based on Instance-Based Learning Theory (IBLT) to capture
human decisions in many dynamic decision making tasks, we propose three
variants of Multi-Agent IBL models (MAIBL). The idea of these MAIBL algorithms
is to combine the cognitive mechanisms of IBLT and the techniques of MADRL
models to deal with coordination MAS in stochastic environments from the
perspective of independent learners. We demonstrate that the MAIBL models
exhibit faster learning and achieve better coordination in a dynamic CMOTP task
with various settings of stochastic rewards compared to current MADRL models.
We discuss the benefits of integrating cognitive insights into MADRL models.
Related papers
- Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
Bottom Up Network (BUN) treats the collective of multi-agents as a unified entity.
Our empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
arXiv Detail & Related papers (2024-10-03T14:25:02Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
arXiv Detail & Related papers (2024-02-06T13:02:00Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
We propose a new method called MAMBA which utilizes Model-Based Reinforcement Learning (MBRL) to further leverage centralized training in cooperative environments.
We argue that communication between agents is enough to sustain a world model for each agent during execution phase while imaginary rollouts can be used for training, removing the necessity to interact with the environment.
arXiv Detail & Related papers (2022-05-25T08:35:00Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.