論文の概要: UniRes: Universal Image Restoration for Complex Degradations
- arxiv url: http://arxiv.org/abs/2506.05599v1
- Date: Thu, 05 Jun 2025 21:25:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.241548
- Title: UniRes: Universal Image Restoration for Complex Degradations
- Title(参考訳): UniRes: 複雑な劣化のためのユニバーサルイメージ復元
- Authors: Mo Zhou, Keren Ye, Mauricio Delbracio, Peyman Milanfar, Vishal M. Patel, Hossein Talebi,
- Abstract要約: 実世界のイメージ復元は、様々なキャプチャ条件、キャプチャデバイス、後処理パイプラインから生じるさまざまな劣化によって妨げられている。
UniResという名前の、シンプルで柔軟な拡散ベースのフレームワークは、このような劣化をエンドツーエンドで解決するために提案されている。
提案手法は, 複合劣化画像復元データセットと単分解画像復元データセットの両方を用いて評価する。
- 参考スコア(独自算出の注目度): 53.74404005987783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world image restoration is hampered by diverse degradations stemming from varying capture conditions, capture devices and post-processing pipelines. Existing works make improvements through simulating those degradations and leveraging image generative priors, however generalization to in-the-wild data remains an unresolved problem. In this paper, we focus on complex degradations, i.e., arbitrary mixtures of multiple types of known degradations, which is frequently seen in the wild. A simple yet flexible diffusionbased framework, named UniRes, is proposed to address such degradations in an end-to-end manner. It combines several specialized models during the diffusion sampling steps, hence transferring the knowledge from several well-isolated restoration tasks to the restoration of complex in-the-wild degradations. This only requires well-isolated training data for several degradation types. The framework is flexible as extensions can be added through a unified formulation, and the fidelity-quality trade-off can be adjusted through a new paradigm. Our proposed method is evaluated on both complex-degradation and single-degradation image restoration datasets. Extensive qualitative and quantitative experimental results show consistent performance gain especially for images with complex degradations.
- Abstract(参考訳): 実世界のイメージ復元は、様々なキャプチャ条件、キャプチャデバイス、後処理パイプラインから生じるさまざまな劣化によって妨げられている。
既存の研究は、これらの劣化をシミュレートし、画像生成の先行を活用することによって改善するが、未解決の問題は未解決のままである。
本稿では,複雑な劣化,すなわち,野生でよく見られる複数の既知の劣化の任意の混合に焦点をあてる。
UniResという名前の、シンプルで柔軟な拡散ベースのフレームワークは、このような劣化をエンドツーエンドで解決するために提案されている。
拡散サンプリングの段階では、いくつかの特別なモデルを組み合わせて、よく分離された復元タスクからの知識を複雑な内部劣化の復元に転送する。
これは、いくつかの劣化タイプに対して、十分に分離されたトレーニングデータのみを必要とする。
フレームワークは統一された定式化によって拡張を追加することができ、忠実さと品質のトレードオフを新しいパラダイムで調整できるため、柔軟性がある。
提案手法は, 複合劣化画像復元データセットと単分解画像復元データセットの両方を用いて評価する。
大規模定性的および定量的な実験結果から、特に複雑な劣化を有する画像において、一貫した性能向上が示された。
関連論文リスト
- UniUIR: Considering Underwater Image Restoration as An All-in-One Learner [49.35128836844725]
我々はUniUIRと呼ばれるユニバーサル水中画像復元手法を提案する。
劣化固有の問題を分離し、UIRタスクにおける様々な劣化の相関関係を探るため、我々はMamba Mixture-of-Expertsモジュールを設計した。
このモジュールは、空間領域と周波数領域の両方において劣化前の情報を抽出し、最適なタスク固有のプロンプトを適応的に選択する。
論文 参考訳(メタデータ) (2025-01-22T16:10:42Z) - UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity [79.90839080916913]
We present our UniRestorer with improve restoration performance。
具体的には、劣化空間上で階層的クラスタリングを行い、マルチグラニュラリティ・ミックス・オブ・エキスパート(MoE)復元モデルを訓練する。
UniRestorerは、既存の劣化診断法と -aware 法とは対照的に、劣化推定を利用して劣化特定回復の恩恵を受けることができる。
論文 参考訳(メタデータ) (2024-12-28T14:09:08Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
本稿では,UIR(Universal Image Restoration)という新たなタスク設定を提案する。
UIRは、すべての劣化組み合わせのトレーニングを必要とせず、一連の劣化基だけに限って、これらの基がゼロショットで構成できる可能性のある劣化を取り除く。
本稿では,未知の複合劣化を段階的に除去するモデルをモデルに指示する,CoR(Chain-of-Restoration)機構を提案する。
論文 参考訳(メタデータ) (2024-10-11T10:21:42Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
現実のシナリオでは、画像障害はしばしば複合的な劣化として現れ、低光、迷路、雨、雪といった要素の複雑な相互作用を示す。
本研究では, 複雑な複合劣化シナリオを正確に表現するために, 4つの物理劣化パラダイムを統合した多目的イメージングモデルを提案する。
OneRestoreは、適応的で制御可能なシーン復元のために設計された新しいトランスフォーマーベースのフレームワークである。
論文 参考訳(メタデータ) (2024-07-05T16:27:00Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations [29.14467633167042]
悪天候下における画像復元のための新しい手法を提案する。
大気散乱モデルに基づく混合劣化モデルを用いて, 復元過程全体を導出する。
マルチウェザーおよび気象特化データセットの実験は、最先端の競合手法よりも、我々の手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-04-11T14:07:16Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
本研究では,新たな視点から双方向の劣化と復元をモデル化する,新しい可逆的枠組みを提案する。
我々は、有効な劣化画像を生成し、失われたコンテンツの分布を変換する可逆モデルを開発する。
そして、ランダムに描画された潜在変数とともに、生成された劣化画像に逆変換を適用することにより、復元可能とする。
論文 参考訳(メタデータ) (2022-10-09T06:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。