Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
- URL: http://arxiv.org/abs/2506.05699v1
- Date: Fri, 06 Jun 2025 03:02:49 GMT
- Title: Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
- Authors: Ramteja Sajja, Yusuf Sermet, Brian Fodale, Ibrahim Demir,
- Abstract summary: This study evaluates the use of the Educational AI Hub, an AI-powered learning framework, in undergraduate civil and environmental engineering courses at a large R1 public university.<n>Students appreciated the AI assistant for its convenience and comfort, with nearly half reporting greater ease in using the AI tool.<n>While most students viewed AI use as ethically acceptable, many expressed uncertainties about institutional policies and apprehension about potential academic misconduct.
- Score: 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As generative AI tools become increasingly integrated into higher education, understanding how students interact with and perceive these technologies is essential for responsible and effective adoption. This study evaluates the use of the Educational AI Hub, an AI-powered learning framework, in undergraduate civil and environmental engineering courses at a large R1 public university. Using a mixed-methods approach that combines pre- and post-surveys, system usage logs, and qualitative analysis of the open-ended prompts and questions students posed to the AI chatbot, the research explores students' perceptions of trust, ethical concerns, usability, and learning outcomes. Findings reveal that students appreciated the AI assistant for its convenience and comfort, with nearly half reporting greater ease in using the AI tool compared to seeking help from instructors or teaching assistants. The tool was seen as most helpful for completing homework and understanding course concepts, though perceptions of its instructional quality were mixed. Ethical concerns emerged as a key barrier to full engagement: while most students viewed AI use as ethically acceptable, many expressed uncertainties about institutional policies and apprehension about potential academic misconduct. This study contributes to the growing body of research on AI in education by highlighting the importance of usability, policy clarity, and faculty guidance in fostering meaningful AI engagement. The findings suggest that while students are ready to embrace AI as a supplement to human instruction, thoughtful integration and transparent institutional frameworks are critical for ensuring student confidence, trust, and learning effectiveness.
Related papers
- AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind [2.0272430076690027]
This study examines how students' AI literacy and prior exposure to AI technologies shape their perceptions of Socratic Mind.<n>Data from 309 undergraduates in Computer Science and Business courses were collected.
arXiv Detail & Related papers (2025-07-29T10:11:24Z) - Do AI tutors empower or enslave learners? Toward a critical use of AI in education [7.673465837624366]
The paper argues that while AI can support learning, its unchecked use may lead to cognitive atrophy.<n>The paper advocates for an intentional, transparent, and critically informed use of AI that empowers rather than diminishes the learner.
arXiv Detail & Related papers (2025-07-09T14:15:49Z) - Student Perspectives on the Benefits and Risks of AI in Education [0.49157446832511503]
The use of chatbots equipped with artificial intelligence (AI) in educational settings has increased in recent years.<n>The adoption of these technologies has raised concerns about their impact on academic integrity, students' ability to problem-solve independently, and potential underlying biases.<n>To better understand students' perspectives and experiences with these tools, a survey was conducted at a large public university in the United States.
arXiv Detail & Related papers (2025-05-04T17:36:11Z) - Methodological Foundations for AI-Driven Survey Question Generation [41.94295877935867]
This paper presents a methodological framework for using generative AI in educational survey research.<n>We explore how Large Language Models can generate adaptive, context-aware survey questions.<n>We examine ethical issues such as bias, privacy, and transparency.
arXiv Detail & Related papers (2025-05-02T09:50:34Z) - AI in Education: Rationale, Principles, and Instructional Implications [0.0]
Generative AI, like ChatGPT, can create human-like content, prompting questions about its educational role.<n>The study emphasizes deliberate strategies to ensure AI complements, not replaces, genuine cognitive effort.
arXiv Detail & Related papers (2024-12-02T14:08:07Z) - Effects of a Prompt Engineering Intervention on Undergraduate Students' AI Self-Efficacy, AI Knowledge and Prompt Engineering Ability: A Mixed Methods Study [36.48421439947282]
This study designed and implemented a prompt engineering intervention at a university in Hong Kong.
It examined students' AI self-efficacy, AI knowledge, and proficiency in creating effective prompts.
arXiv Detail & Related papers (2024-07-30T15:05:24Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
AI in education raises ethical concerns regarding validity, reliability, transparency, fairness, and equity.
Various stakeholders, including educators, policymakers, and organizations, have developed guidelines to ensure ethical AI use in education.
In this paper, a diverse group of AIME members examines the ethical implications of AI-powered tools in educational measurement.
arXiv Detail & Related papers (2024-06-27T05:28:40Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
We introduce an intelligent system (CL-XAI) for Cognitive Learning which is supported by artificial intelligence (AI) tools.
The use of CL-XAI is illustrated with a game-inspired virtual use case where learners tackle problems to enhance problem-solving skills.
arXiv Detail & Related papers (2023-12-19T16:13:47Z) - Learning to Prompt in the Classroom to Understand AI Limits: A pilot
study [35.06607166918901]
Large Language Models (LLM) and the derived chatbots, like ChatGPT, have highly improved the natural language processing capabilities of AI systems.
However, excitement has led to negative sentiments, even as AI methods demonstrate remarkable contributions.
A pilot educational intervention was performed in a high school with 21 students.
arXiv Detail & Related papers (2023-07-04T07:51:37Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
This paper examines the transformative role of Large Language Models (LLMs) in education and their potential as learning tools.
The authors propose seven approaches for utilizing AI in classrooms: AI-tutor, AI-coach, AI-mentor, AI-teammate, AI-tool, AI-simulator, and AI-student.
arXiv Detail & Related papers (2023-06-13T03:36:36Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
This position paper reviews artificial general intelligence (AGI)'s key concepts, capabilities, scope, and potential within future education.
It highlights that AGI can significantly improve intelligent tutoring systems, educational assessment, and evaluation procedures.
The paper emphasizes that AGI's capabilities extend to understanding human emotions and social interactions.
arXiv Detail & Related papers (2023-04-24T22:31:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.