論文の概要: Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling
- arxiv url: http://arxiv.org/abs/2506.05831v2
- Date: Mon, 09 Jun 2025 08:22:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 14:13:04.165229
- Title: Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling
- Title(参考訳): マルチリード信号モデリングによる心電図の多次元的理解
- Authors: Yihan Xie, Sijing Li, Tianwei Lin, Zhuonan Wang, Chenglin Yang, Yu Zhong, Wenqiao Zhang, Haoyuan Li, Hao Jiang, Fengda Zhang, Qishan Chen, Jun Xiao, Yueting Zhuang, Beng Chin Ooi,
- Abstract要約: 医療スイート(Heartcare Suite)は、微細心電図(ECG)の理解のためのフレームワークである。
Heartcare-220Kは高品質で構造化され、包括的なマルチモーダルECGデータセットである。
Heartcare-Benchは、ECGシナリオにおける医療マルチモーダル大言語モデル(Med-MLLM)の最適化を導くためのベンチマークである。
- 参考スコア(独自算出の注目度): 50.58126509704037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Heartcare Suite, a multimodal comprehensive framework for finegrained electrocardiogram (ECG) understanding. It comprises three key components: (i) Heartcare-220K, a high-quality, structured, and comprehensive multimodal ECG dataset covering essential tasks such as disease diagnosis, waveform morphology analysis, and rhythm interpretation. (ii) Heartcare-Bench, a systematic and multi-dimensional benchmark designed to evaluate diagnostic intelligence and guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios. and (iii) HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat), which compresses raw multi-lead signals into semantically rich discrete tokens via duallevel vector quantization and query-guided bidirectional diffusion mechanism. Built upon Heartcare-220K, HeartcareGPT achieves strong generalization and SoTA performance across multiple clinically meaningful tasks. Extensive experiments demonstrate that Heartcare Suite is highly effective in advancing ECGspecific multimodal understanding and evaluation. Our project is available at https://github.com/DCDmllm/Heartcare-Suite .
- Abstract(参考訳): 心電図(ECG)理解のためのマルチモーダル包括的枠組みであるHeartcare Suiteを提案する。
主な構成要素は3つある。
i)Heartcare-220Kは,疾患診断,波形形態解析,リズム解釈などの重要な課題を網羅した,高品質で構造化された総合多モード心電図データセットである。
(II)Heartcare-Benchは、診断知能の評価と、ECGシナリオにおける医療マルチモーダル大言語モデル(Med-MLLM)の最適化の指針として設計された、体系的で多次元のベンチマークである。
そして
3)HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat) which compresss raw multi-lead signals into semantically rich discrete tokens through duallevel vector Quantization and query-guided bidirectional diffusion mechanism。
Heartcare-220Kをベースとして開発されたHeartcareGPTは、複数の臨床的に意味のあるタスクにまたがって、強力な一般化とSoTAパフォーマンスを実現する。
広範な実験により、Heartcare SuiteはECG特有のマルチモーダル理解と評価を促進するのに非常に効果的であることが示された。
私たちのプロジェクトはhttps://github.com/DCDmllm/Heartcare-Suiteで利用可能です。
関連論文リスト
- CardioPatternFormer: Pattern-Guided Attention for Interpretable ECG Classification with Transformer Architecture [0.40964539027092906]
解釈可能なECG分類のためのトランスフォーマーモデルであるCardioPatternFormerを提案する。
多様な心臓パターンを正確に識別し分類するために、洗練された注意機構を用いる。
微妙な異常を識別し、複数の共起条件を識別する。
論文 参考訳(メタデータ) (2025-05-26T19:36:58Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
ECG Foundation Model (ECGFounder)は、Harvard-Emory ECG Databaseから150のラベルカテゴリを持つ1000万以上のECGをトレーニングしている。
ECGFounderは内部検証セットのエキスパートレベルのパフォーマンスを達成し、AUROCは80の診断で0.95を超えている。
微調整されたECGFounderは、人口統計分析、臨床イベント検出、心拍数横断診断においてベースラインモデルを上回っている。
論文 参考訳(メタデータ) (2024-10-05T12:12:02Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
本研究は,12誘導ECG信号の学習表現の品質とロバスト性の向上を目的とした,新しいマルチモーダルコントラスト保持フレームワークを提案する。
私たちのフレームワークは、Cardio Query Assistant(CQA)とECG Semantics Integrator(ESI)の2つの重要なコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-26T06:45:39Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。