Policy Optimization for Continuous-time Linear-Quadratic Graphon Mean Field Games
- URL: http://arxiv.org/abs/2506.05894v1
- Date: Fri, 06 Jun 2025 09:06:06 GMT
- Title: Policy Optimization for Continuous-time Linear-Quadratic Graphon Mean Field Games
- Authors: Philipp Plank, Yufei Zhang,
- Abstract summary: Graphon mean field games offer a principled framework for approximating such games.<n>We propose and analyze a policy optimization framework for continuous-time, finite-horizon linear-quadratic GMFGs.
- Score: 3.1755820123640612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning, despite its popularity and empirical success, faces significant scalability challenges in large-population dynamic games. Graphon mean field games (GMFGs) offer a principled framework for approximating such games while capturing heterogeneity among players. In this paper, we propose and analyze a policy optimization framework for continuous-time, finite-horizon linear-quadratic GMFGs. Exploiting the structural properties of GMFGs, we design an efficient policy parameterization in which each player's policy is represented as an affine function of their private state, with a shared slope function and player-specific intercepts. We develop a bilevel optimization algorithm that alternates between policy gradient updates for best-response computation under a fixed population distribution, and distribution updates using the resulting policies. We prove linear convergence of the policy gradient steps to best-response policies and establish global convergence of the overall algorithm to the Nash equilibrium. The analysis relies on novel landscape characterizations over infinite-dimensional policy spaces. Numerical experiments demonstrate the convergence and robustness of the proposed algorithm under varying graphon structures, noise levels, and action frequencies.
Related papers
- Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Policy Gradient Algorithms Implicitly Optimize by Continuation [7.351769270728942]
We argue that exploration in policy-gradient algorithms consists in a continuation of the return of the policy at hand, and that policies should be history-dependent rather than to maximize the return.
arXiv Detail & Related papers (2023-05-11T14:50:20Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Convergence of policy gradient methods for finite-horizon exploratory
linear-quadratic control problems [3.8661825615213012]
We study the global linear convergence of policy gradient (PG) methods for finite-horizon continuous-time exploratory linear-quadratic control (LQC) problems.
We propose a novel PG method with discretetime policies. The algorithm leverages the continuous-time analysis, and achieves a robust linear convergence across different action frequencies.
arXiv Detail & Related papers (2022-11-01T17:31:41Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - Provable Fictitious Play for General Mean-Field Games [111.44976345867005]
We propose a reinforcement learning algorithm for stationary mean-field games.
The goal is to learn a pair of mean-field state and stationary policy that constitutes the Nash equilibrium.
arXiv Detail & Related papers (2020-10-08T18:46:48Z) - Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field
Control/Game in Continuous Time [109.06623773924737]
We study the policy gradient method for the linear-quadratic mean-field control and game.
We show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation.
arXiv Detail & Related papers (2020-08-16T06:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.