Policy Gradient Algorithms Implicitly Optimize by Continuation
- URL: http://arxiv.org/abs/2305.06851v3
- Date: Sat, 21 Oct 2023 12:23:25 GMT
- Title: Policy Gradient Algorithms Implicitly Optimize by Continuation
- Authors: Adrien Bolland, Gilles Louppe, Damien Ernst
- Abstract summary: We argue that exploration in policy-gradient algorithms consists in a continuation of the return of the policy at hand, and that policies should be history-dependent rather than to maximize the return.
- Score: 7.351769270728942
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Direct policy optimization in reinforcement learning is usually solved with
policy-gradient algorithms, which optimize policy parameters via stochastic
gradient ascent. This paper provides a new theoretical interpretation and
justification of these algorithms. First, we formulate direct policy
optimization in the optimization by continuation framework. The latter is a
framework for optimizing nonconvex functions where a sequence of surrogate
objective functions, called continuations, are locally optimized. Second, we
show that optimizing affine Gaussian policies and performing entropy
regularization can be interpreted as implicitly optimizing deterministic
policies by continuation. Based on these theoretical results, we argue that
exploration in policy-gradient algorithms consists in computing a continuation
of the return of the policy at hand, and that the variance of policies should
be history-dependent functions adapted to avoid local extrema rather than to
maximize the return of the policy.
Related papers
- Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning.
In this paper, we propose our closed-form policy improvement operators.
We empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
arXiv Detail & Related papers (2022-11-29T06:29:26Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
We develop a new framework for off-policy evaluation with a textitpolicy-dependent linear optimization response.
We construct unbiased estimators for the policy-dependent estimand by a perturbation method.
We provide a general algorithm for optimizing causal interventions.
arXiv Detail & Related papers (2022-02-25T20:25:37Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Neural Network Compatible Off-Policy Natural Actor-Critic Algorithm [16.115903198836694]
Learning optimal behavior from existing data is one of the most important problems in Reinforcement Learning (RL)
This is known as "off-policy control" in RL where an agent's objective is to compute an optimal policy based on the data obtained from the given policy (known as the behavior policy)
This work proposes an off-policy natural actor-critic algorithm that utilizes state-action distribution correction for handling the off-policy behavior and the natural policy gradient for sample efficiency.
arXiv Detail & Related papers (2021-10-19T14:36:45Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary
MDPs [45.6318149525364]
We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs)
We propose the $underlinetextp$eriodically $underlinetextr$estarted $underlinetexto$ptimistic $underlinetextp$olicy $underlinetexto$ptimization algorithm (PROPO)
arXiv Detail & Related papers (2021-10-18T02:33:20Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Iterative Amortized Policy Optimization [147.63129234446197]
Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
arXiv Detail & Related papers (2020-10-20T23:25:42Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.