論文の概要: MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2506.05928v1
- Date: Fri, 06 Jun 2025 09:54:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.410144
- Title: MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models
- Title(参考訳): MoA: パラメータ効率の良い大規模言語モデルの微調整のための適応器の不均一混合
- Authors: Jie Cao, Tianwei Lin, Hongyang He, Rolan Yan, Wenqiao Zhang, Juncheng Li, Dongping Zhang, Siliang Tang, Yueting Zhuang,
- Abstract要約: ローランド適応 (LoRA) とミックスオブエキスパート (MoE) を統合するための固有テキストbfMixture-of-Adapters (MoA) アプローチを提案する。
実験結果から, 不均一なMoAは均一なMoE-LoRA法よりも性能およびパラメータ効率が優れていることがわかった。
- 参考スコア(独自算出の注目度): 61.89384981175277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ \emph{homogeneous} MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA)} approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: \textbf{(i)} \textit{Soft MoA} achieves fine-grained integration by performing a weighted fusion of all expert outputs; \textbf{(ii)} \textit{Sparse MoA} activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.
- Abstract(参考訳): 近年、Low-Rank Adaptation (LoRA) とMixture-of-Experts (MoE) を統合し、Large Language Model (LLM) アプリケーションにおけるパラメータ効率の良い微細チューニング(PEFT)法の性能をさらに向上させている。
既存の手法では、同様の構造と能力を持つLoRAの専門家からなる 'emph{homogeneous} MoE-LoRA アーキテクチャを採用している。
しかしながら、これらのアプローチはしばしば表現の崩壊と専門家の負荷不均衡に悩まされ、LLMのポテンシャルに悪影響を及ぼす。
これらの課題に対処するため、我々は \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA) アプローチを提案する。
本手法はPEFTアダプタの専門家を多様な構造で動的に統合し,その補完的な表現能力を活用して専門家の専門化を促進することにより,事前学習した知識を下流タスクへ効果的に伝達する。
MoAは2つの変種をサポートしている。
(i)} \textit{Soft MoA} は、すべての専門家出力の重み付けされた融合を実行することで、きめ細かい積分を達成する。
(ii)} \textit{Sparse MoA} は、その貢献に基づいて、アダプタの専門家を疎結合に活性化し、これを無視可能なパフォーマンス劣化で達成する。
実験により, 不均一なMoAは, 均一なMoE-LoRA法よりも性能およびパラメータ効率が優れていることが示された。
私たちのプロジェクトはhttps://github.com/DCDmllm/MoA.comで公開されています。
関連論文リスト
- S'MoRE: Structural Mixture of Residual Experts for LLM Fine-tuning [17.579948649237497]
我々は,LoRAの効率とMoEの柔軟性をシームレスに統合する新しいフレームワークであるResidual Experts (S'MoRE)を提案する。
具体的には、S'MoREはエキスパートウェイトを階層的に低ランクに分解し、多層構造に相互接続した様々な順序の残基を生成する。
我々はS'MoREが従来のMoE(Mixture-of-LoRA)の「構造的柔軟性」を指数的順序で改善することを証明する。
論文 参考訳(メタデータ) (2025-04-08T20:54:00Z) - DynMoLE: Boosting Mixture of LoRA Experts Fine-Tuning with a Hybrid Routing Mechanism [5.988126768890861]
DynMoLEは、ルータの確率分布のTsallisエントロピーに基づいて、専門家の選択を動的に調整するハイブリッドルーティング戦略である。
我々はDynMoLEが大幅な性能向上を実現していることを示す。
論文 参考訳(メタデータ) (2025-04-01T11:14:19Z) - MergeME: Model Merging Techniques for Homogeneous and Heterogeneous MoEs [45.20965298945085]
本稿では,パラメータ干渉を緩和する手法,ルーティング,アーキテクチャの異なる専門家をマージするための新しい手法など,新たなMoEマージ手法を提案する。
複数の領域にわたる実験により,提案手法の有効性,微調整コストの低減,最先端手法の性能向上,MoEマージの適用性の向上が示された。
論文 参考訳(メタデータ) (2025-02-03T02:34:46Z) - OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
低ランク適応(LoRA)のためのMixix-of-experts(MoE)アーキテクチャは、パラメータ効率の微調整(PEFT)における潜在的方向として出現している。
まず,バニラMoEの類似表現に専門家が崩壊し,モジュール設計の能力と計算効率が制限されることを示す定性解析を行った。
これらの知見に触発されて、直交混合(OMoE)を提案する。
提案手法は,バニラMOEモデルと比較して最小限の専門家を惹起するため,メモリボトルネックを緩和する。
論文 参考訳(メタデータ) (2025-01-17T09:27:08Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment [103.05005690990271]
MoTE(Mixture of insightful Experts)は、推論チェーンとエキスパートミックスを組み合わせて自己調整を改善する新しいフレームワークである。
MoTEはモデルの安全性、脱獄耐性、過剰な拒否機能を大幅に改善し、OpenAIの最先端のo1モデルに匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-01T15:06:05Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE)は、ディープラーニングにおいて非常に成功したテクニックとして登場した。
本研究では,MoEの専門家が多様性の専門化や欠如に失敗した同質表現問題に光を当てた。
我々は,各専門家が他の専門家に分散された部分空間への方向を更新するように促す訓練戦略を交互に提案する。
論文 参考訳(メタデータ) (2023-10-15T07:20:28Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
量子多体物理学から行列積演算子(MPO)に基づく新しいMoEアーキテクチャを提案する。
分解されたMPO構造により、元のMoEアーキテクチャのパラメータを減らすことができる。
GPT2に基づく3つの有名な下流自然言語データセットの実験は、モデルキャパシティの向上における性能と効率の向上を示している。
論文 参考訳(メタデータ) (2022-03-02T13:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。