Additive decomposition of one-dimensional signals using Transformers
- URL: http://arxiv.org/abs/2506.05942v1
- Date: Fri, 06 Jun 2025 10:09:40 GMT
- Title: Additive decomposition of one-dimensional signals using Transformers
- Authors: Samuele Salti, Andrea Pinto, Alessandro Lanza, Serena Morigi,
- Abstract summary: One-dimensional signal decomposition is a well-established and widely used technique across various scientific fields.<n>Recent research suggests that applying the latest deep learning models to this problem presents an exciting, unexplored area with promising potential.<n>We leverage the Transformer architecture to decompose signals into their constituent components.
- Score: 48.7025991956527
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One-dimensional signal decomposition is a well-established and widely used technique across various scientific fields. It serves as a highly valuable pre-processing step for data analysis. While traditional decomposition techniques often rely on mathematical models, recent research suggests that applying the latest deep learning models to this problem presents an exciting, unexplored area with promising potential. This work presents a novel method for the additive decomposition of one-dimensional signals. We leverage the Transformer architecture to decompose signals into their constituent components: piece-wise constant, smooth (low-frequency oscillatory), textured (high-frequency oscillatory), and a noise component. Our model, trained on synthetic data, achieves excellent accuracy in modeling and decomposing input signals from the same distribution, as demonstrated by the experimental results.
Related papers
- Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals [1.124958340749622]
We propose a network architecture specially tailored for scintillation pulse characterization based on previous works on time series analysis.<n>We prove our idea in two case studies: (a) simulation data generated with the setting of the LUX dark matter detector, and (b) experimental electrical signals with fast electronics to emulate scintillation variations for the NICA/MPD calorimeter.
arXiv Detail & Related papers (2024-10-09T02:44:53Z) - Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
In computed tomography (CT) the forward model consists of a linear transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law.
We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal crowns.
arXiv Detail & Related papers (2023-10-06T00:47:57Z) - RRCNN: A novel signal decomposition approach based on recurrent residue
convolutional neural network [7.5123109191537205]
We propose a new non-stationary signal decomposition method under the framework of deep learning.
We use the convolutional neural network, residual structure and nonlinear activation function to compute in an innovative way the local average of the signal.
In the experiments, we evaluate the performance of the proposed model from two points of view: the calculation of the local average and the signal decomposition.
arXiv Detail & Related papers (2023-07-04T13:53:01Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
Diffusion models learn to reverse a signal destruction process to generate new data.
We make a theoretical generalization of the forward diffusion process via signal decomposition.
We show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024times1024$ resolution from 52.40 to 10.46.
arXiv Detail & Related papers (2022-11-29T09:05:55Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Model discovery in the sparse sampling regime [0.0]
We show how deep learning can improve model discovery of partial differential equations.
As a result, deep learning-based model discovery allows to recover the underlying equations.
We illustrate our claims on both synthetic and experimental sets.
arXiv Detail & Related papers (2021-05-02T06:27:05Z) - Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder [3.8580784887142774]
This paper presents a fractional one-dimensional convolutional neural network (CNN) autoencoder for denoising the Electroencephalogram (EEG) signals.
EEG signals often get contaminated with noise during the recording process, mostly due to muscle artifacts (MA)
arXiv Detail & Related papers (2021-04-16T13:58:05Z) - Iterative Correction of Sensor Degradation and a Bayesian Multi-Sensor
Data Fusion Method [0.0]
We present a novel method for inferring ground-truth signal from degraded signals.
The algorithm learns a multiplicative degradation effect by performing iterative corrections of two signals.
We include theoretical analysis and prove convergence to the ground-truth signal for the noiseless measurement model.
arXiv Detail & Related papers (2020-09-07T13:24:47Z) - Theory inspired deep network for instantaneous-frequency extraction and
signal components recovery from discrete blind-source data [1.6758573326215689]
This paper is concerned with the inverse problem of recovering the unknown signal components, along with extraction of their frequencies.
None of the existing decomposition methods and algorithms is capable of solving this inverse problem.
We propose a synthesis of a deep neural network, based directly on a discrete sample set, that may be non-uniformly sampled, of the blind-source signal.
arXiv Detail & Related papers (2020-01-31T18:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.