Token Signature: Predicting Chain-of-Thought Gains with Token Decoding Feature in Large Language Models
- URL: http://arxiv.org/abs/2506.06008v1
- Date: Fri, 06 Jun 2025 11:53:27 GMT
- Title: Token Signature: Predicting Chain-of-Thought Gains with Token Decoding Feature in Large Language Models
- Authors: Peijie Liu, Fengli Xu, Yong Li,
- Abstract summary: Chain-of-Thought (CoT) technique has proven effective in improving the performance of large language models (LLMs) on complex reasoning tasks.<n>We make a preliminary observation that the monotonicity of token probability distributions may be correlated with the gains achieved through CoT reasoning.<n>We propose two indicators based on the token probability distribution to assess CoT effectiveness across different tasks.
- Score: 9.282278040339138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) technique has proven effective in improving the performance of large language models (LLMs) on complex reasoning tasks. However, the performance gains are inconsistent across different tasks, and the underlying mechanism remains a long-standing research question. In this work, we make a preliminary observation that the monotonicity of token probability distributions may be correlated with the gains achieved through CoT reasoning. Leveraging this insight, we propose two indicators based on the token probability distribution to assess CoT effectiveness across different tasks. By combining instance-level indicators with logistic regression model, we introduce Dynamic CoT, a method that dynamically select between CoT and direct answer. Furthermore, we extend Dynamic CoT to closed-source models by transferring decision strategies learned from open-source models. Our indicators for assessing CoT effectiveness achieve an accuracy of 89.2\%, and Dynamic CoT reduces token consumption by more than 35\% while maintaining high accuracy. Overall, our work offers a novel perspective on the underlying mechanisms of CoT reasoning and provides a framework for its more efficient deployment.
Related papers
- How Chain-of-Thought Works? Tracing Information Flow from Decoding, Projection, and Activation [9.455881608413137]
Chain-of-Thought (CoT) prompting significantly enhances model reasoning, yet its internal mechanisms remain poorly understood.<n>We analyze CoT's operational principles by reversely tracing information flow across decoding, projection, and activation phases.
arXiv Detail & Related papers (2025-07-28T12:11:16Z) - Deep Hidden Cognition Facilitates Reliable Chain-of-Thought Reasoning [33.30315111732609]
Chain of Thought (CoT) reasoning has demonstrated remarkable deep reasoning capabilities.<n>However, its reliability is often undermined by the accumulation of errors in intermediate steps.<n>This paper introduces an approach to calibrate the CoT reasoning accuracy by leveraging the model's intrinsic veracity encoding.
arXiv Detail & Related papers (2025-07-14T07:41:35Z) - SE-Merging: A Self-Enhanced Approach for Dynamic Model Merging [60.83635006372403]
textttSE-Merging is a self-enhanced model merging framework.<n>We show that textttSE-Merging achieves dynamic model merging without additional training.
arXiv Detail & Related papers (2025-06-22T18:38:41Z) - Continuous Chain of Thought Enables Parallel Exploration and Reasoning [38.59659461841282]
Current language models generate chain-of-thought traces by autoregressively sampling tokens from a finite vocabulary.<n>Our work examines the benefits of continuously-valued tokens (CoT2) through logical reasoning tasks.<n>We show that CoT2 allows the model to track multiple traces in parallel and quantify its benefits for inference efficiency.
arXiv Detail & Related papers (2025-05-29T16:58:28Z) - Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning [54.65050470296886]
We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps.<n>We demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets.<n>Our approach effectively enhances distilled data and provides better starting points for reinforcement learning.
arXiv Detail & Related papers (2025-05-20T17:59:31Z) - Beyond In-Distribution Success: Scaling Curves of CoT Granularity for Language Model Generalization [35.16980045900664]
Generalization to novel compound tasks under distribution shift is important for deploying transformer-based language models (LMs)<n>This work investigates Chain-of-Thought (CoT) reasoning as a means to enhance OOD generalization.
arXiv Detail & Related papers (2025-02-25T15:04:17Z) - Rethinking Chain-of-Thought from the Perspective of Self-Training [10.722453877596998]
Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in LLMs.<n>We propose a novel CoT framework to improve reasoning performance.<n>Our framework integrates two key components: (i) a task-specific prompt module that optimize the initial reasoning process, and (ii) an adaptive reasoning module that dynamically refines the reasoning process.
arXiv Detail & Related papers (2024-12-14T13:12:50Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs)<n>We show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks.
arXiv Detail & Related papers (2024-09-18T17:55:00Z) - Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs [63.36637269634553]
We introduce a novel approach where LLMs are fine-tuned to generate a sequence of Diverse Chains of Thought (DCoT) within a single inference step.<n>We show that fine-tuning on DCoT improves performance over the CoT baseline across model families and scales.<n>Our work is also significant because both quantitative analyses and manual evaluations reveal the observed gains stem from the models' ability to refine an initial reasoning chain.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Markovian Transformers for Informative Language Modeling [0.9642500063568188]
Chain-of-Thought (CoT) reasoning often fails to faithfully reflect a language model's underlying decision process.<n>We make CoT causally essential in a "Markovian" language model, factoring next-token prediction through an intermediate CoT and training it to predict future tokens independently of the original prompt.
arXiv Detail & Related papers (2024-04-29T17:36:58Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.