Deep Hidden Cognition Facilitates Reliable Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2507.10007v1
- Date: Mon, 14 Jul 2025 07:41:35 GMT
- Title: Deep Hidden Cognition Facilitates Reliable Chain-of-Thought Reasoning
- Authors: Zijun Chen, Wenbo Hu, Richang Hong,
- Abstract summary: Chain of Thought (CoT) reasoning has demonstrated remarkable deep reasoning capabilities.<n>However, its reliability is often undermined by the accumulation of errors in intermediate steps.<n>This paper introduces an approach to calibrate the CoT reasoning accuracy by leveraging the model's intrinsic veracity encoding.
- Score: 33.30315111732609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain of Thought (CoT) reasoning has demonstrated remarkable deep reasoning capabilities in both large language models (LLMs) and multimodal large language models (MLLMs). However, its reliability is often undermined by the accumulation of errors in intermediate steps. This paper introduces an novel approach to calibrate the CoT reasoning accuracy by leveraging the model's intrinsic veracity encoding. We discover that specific attention head activations reliably reflect the truthfulness of reasoning steps in CoT. Based on this insight, we train a confidence predictor to evaluate the correctness of each reasoning step using these truthfulness-sensitive activations, dynamically selecting the most plausible reasoning path via beam search. Experimental results demonstrate that our method significantly outperforms the state-of-the-art baselines (e.g., Few-Shot CoT, Self-Consistency, and Self-Evaluation Guided Beam Search) across the mathematical, symbolic, and commonsense reasoning tasks, exhibiting superior accuracy and reliability in both unimodal and multimodal settings. We further validate the approach on large reasoning models, confirming its applicability to specialized reasoning models. Additionally, we explore the role of the model's self-correction ability in CoT reasoning. This work provides a novel reliability improvement path for CoT reasoning with broad application potential.
Related papers
- CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
Chain-of-thought (CoT) reasoning enables large language models to break down complex problems into interpretable intermediate steps.<n>We introduce groundingS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions.<n>We show improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
arXiv Detail & Related papers (2025-07-10T21:32:18Z) - Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models [0.0]
Reasoning Language Models (RLMs) have gained traction for their ability to perform complex, multi-step reasoning tasks.<n>While these capabilities promise improved reliability, their impact on robustness to social biases remains unclear.<n>We leverage the CLEAR-Bias benchmark to investigate the adversarial robustness of RLMs to bias elicitation.
arXiv Detail & Related papers (2025-07-03T17:01:53Z) - Lost at the Beginning of Reasoning [82.18834329384514]
We show that the first reasoning step exerts a disproportionately large influence on the final prediction.<n>We propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps.<n>We introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities.
arXiv Detail & Related papers (2025-06-27T09:53:57Z) - Unveiling Confirmation Bias in Chain-of-Thought Reasoning [12.150655660758359]
Chain-of-thought (CoT) prompting has been widely adopted to enhance the reasoning capabilities of large language models (LLMs)<n>This work presents a novel perspective to understand CoT behavior through the lens of textitconfirmation bias in cognitive psychology.
arXiv Detail & Related papers (2025-06-14T01:30:17Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning [75.1101108949743]
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting.<n>LRMs often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience.<n>We propose ConCISE, a framework that simplifies reasoning chains by reinforcing the model's confidence during inference.
arXiv Detail & Related papers (2025-05-08T01:40:40Z) - Calibrating Reasoning in Language Models with Internal Consistency [18.24350001344488]
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks.<n>LLMs often generate text with obvious mistakes and contradictions.<n>In this work, we investigate reasoning in LLMs through the lens of internal representations.
arXiv Detail & Related papers (2024-05-29T02:44:12Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.