Tensor-to-Tensor Models with Fast Iterated Sum Features
- URL: http://arxiv.org/abs/2506.06041v1
- Date: Fri, 06 Jun 2025 12:44:36 GMT
- Title: Tensor-to-Tensor Models with Fast Iterated Sum Features
- Authors: Joscha Diehl, Rasheed Ibraheem, Leonard Schmitz, Yue Wu,
- Abstract summary: We propose a novel tensor-to-tensor layer with linear cost in the input size.<n>We provide an image-to-image layer that can be plugged into image processing pipelines.
- Score: 3.1806397908898063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data in the form of images or higher-order tensors is ubiquitous in modern deep learning applications. Owing to their inherent high dimensionality, the need for subquadratic layers processing such data is even more pressing than for sequence data. We propose a novel tensor-to-tensor layer with linear cost in the input size, utilizing the mathematical gadget of ``corner trees'' from the field of permutation counting. In particular, for order-two tensors, we provide an image-to-image layer that can be plugged into image processing pipelines. On the one hand, our method can be seen as a higher-order generalization of state-space models. On the other hand, it is based on a multiparameter generalization of the signature of iterated integrals (or sums). The proposed tensor-to-tensor concept is used to build a neural network layer called the Fast Iterated Sums (FIS) layer which integrates seamlessly with other layer types. We demonstrate the usability of the FIS layer with both classification and anomaly detection tasks. By replacing some layers of a smaller ResNet architecture with FIS, a similar accuracy (with a difference of only 0.1\%) was achieved in comparison to a larger ResNet while reducing the number of trainable parameters and multi-add operations. The FIS layer was also used to build an anomaly detection model that achieved an average AUROC of 97.3\% on the texture images of the popular MVTec AD dataset. The processing and modelling codes are publicly available at https://github.com/diehlj/fast-iterated-sums.
Related papers
- LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation [2.0901574458380403]
We propose a new lightweight but efficient model, namely LiteNeXt, for medical image segmentation.<n>The model is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42).<n>Experiments on public datasets including Data Science Bowls, GlaS, ISIC2018, PH2, Sunnybrook, and Lung X-ray data show promising results.
arXiv Detail & Related papers (2024-04-04T01:59:19Z) - Multi-scale Unified Network for Image Classification [33.560003528712414]
CNNs face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs.
We propose Multi-scale Unified Network (MUSN) consisting of multi-scales, a unified network, and scale-invariant constraint.
MUSN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
arXiv Detail & Related papers (2024-03-27T06:40:26Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
We reform the conv layer by resorting to the scale-space theory.
We build a novel style named SCale AttentioN Conv Neural Network (textbfSCAN-CNN)
As a single-shot scheme, the inference is more efficient than multi-shot fusion.
arXiv Detail & Related papers (2022-09-19T06:35:04Z) - Learning strides in convolutional neural networks [34.20666933112202]
This work introduces DiffStride, the first downsampling layer with learnable strides.
Experiments on audio and image classification show the generality and effectiveness of our solution.
arXiv Detail & Related papers (2022-02-03T16:03:36Z) - Patch-based medical image segmentation using Quantum Tensor Networks [1.5899411215927988]
We formulate image segmentation in a supervised setting with tensor networks.
The key idea is to first lift the pixels in image patches to exponentially high dimensional feature spaces.
The performance of the proposed model is evaluated on three 2D- and one 3D- biomedical imaging datasets.
arXiv Detail & Related papers (2021-09-15T07:54:05Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data
via Differentiable Cross-Approximation [53.95297550117153]
We propose an end-to-end trainable framework that processes large-scale visual data tensors by looking emphat a fraction of their entries only.
The proposed approach is particularly useful for large-scale multidimensional grid data, and for tasks that require context over a large receptive field.
arXiv Detail & Related papers (2021-05-29T08:39:57Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
We propose a Hierarchical Visual Transformer (HVT) which progressively pools visual tokens to shrink the sequence length.
It brings a great benefit by scaling dimensions of depth/width/resolution/patch size without introducing extra computational complexity.
Our HVT outperforms the competitive baselines on ImageNet and CIFAR-100 datasets.
arXiv Detail & Related papers (2021-03-19T03:55:58Z) - Evolving Normalization-Activation Layers [100.82879448303805]
We develop efficient rejection protocols to quickly filter out candidate layers that do not work well.
Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures.
Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets.
arXiv Detail & Related papers (2020-04-06T19:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.