Multi-scale Unified Network for Image Classification
- URL: http://arxiv.org/abs/2403.18294v1
- Date: Wed, 27 Mar 2024 06:40:26 GMT
- Title: Multi-scale Unified Network for Image Classification
- Authors: Wenzhuo Liu, Fei Zhu, Cheng-Lin Liu,
- Abstract summary: CNNs face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs.
We propose Multi-scale Unified Network (MUSN) consisting of multi-scales, a unified network, and scale-invariant constraint.
MUSN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
- Score: 33.560003528712414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) have advanced significantly in visual representation learning and recognition. However, they face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs. Conventional methods rescale all input images into a fixed size, wherein a larger fixed size favors performance but rescaling small size images to a larger size incurs digitization noise and increased computation cost. In this work, we carry out a comprehensive, layer-wise investigation of CNN models in response to scale variation, based on Centered Kernel Alignment (CKA) analysis. The observations reveal lower layers are more sensitive to input image scale variations than high-level layers. Inspired by this insight, we propose Multi-scale Unified Network (MUSN) consisting of multi-scale subnets, a unified network, and scale-invariant constraint. Our method divides the shallow layers into multi-scale subnets to enable feature extraction from multi-scale inputs, and the low-level features are unified in deep layers for extracting high-level semantic features. A scale-invariant constraint is posed to maintain feature consistency across different scales. Extensive experiments on ImageNet and other scale-diverse datasets, demonstrate that MSUN achieves significant improvements in both model performance and computational efficiency. Particularly, MSUN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
Related papers
- Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.
MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.
MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - Cascaded Multi-Scale Attention for Enhanced Multi-Scale Feature Extraction and Interaction with Low-Resolution Images [20.140898354987353]
We propose a new attention mechanism, named cascaded multi-scale attention (CMSA), to handle low-resolution inputs effectively.
This architecture allows for the effective handling of features across different scales, enhancing the model's ability to perform tasks such as human pose estimation.
Our experimental results show that the proposed method outperforms existing state-of-the-art methods in these areas with fewer parameters.
arXiv Detail & Related papers (2024-12-03T06:23:19Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
We reform the conv layer by resorting to the scale-space theory.
We build a novel style named SCale AttentioN Conv Neural Network (textbfSCAN-CNN)
As a single-shot scheme, the inference is more efficient than multi-shot fusion.
arXiv Detail & Related papers (2022-09-19T06:35:04Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
We propose a Hierarchical Visual Transformer (HVT) which progressively pools visual tokens to shrink the sequence length.
It brings a great benefit by scaling dimensions of depth/width/resolution/patch size without introducing extra computational complexity.
Our HVT outperforms the competitive baselines on ImageNet and CIFAR-100 datasets.
arXiv Detail & Related papers (2021-03-19T03:55:58Z) - Efficient and Accurate Multi-scale Topological Network for Single Image
Dehazing [31.543771270803056]
In this paper, we pay attention to the feature extraction and utilization of the input image itself.
We propose a Multi-scale Topological Network (MSTN) to fully explore the features at different scales.
Meanwhile, we design a Multi-scale Feature Fusion Module (MFFM) and an Adaptive Feature Selection Module (AFSM) to achieve the selection and fusion of features at different scales.
arXiv Detail & Related papers (2021-02-24T08:53:14Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.