SDS-Net: Shallow-Deep Synergism-detection Network for infrared small target detection
- URL: http://arxiv.org/abs/2506.06042v1
- Date: Fri, 06 Jun 2025 12:44:41 GMT
- Title: SDS-Net: Shallow-Deep Synergism-detection Network for infrared small target detection
- Authors: Taoran Yue, Xiaojin Lu, Jiaxi Cai, Yuanping Chen, Shibing Chu,
- Abstract summary: Current CNN-based infrared small target detection methods overlook the heterogeneity between shallow and deep features.<n>The dependency relationships and fusion mechanisms fail to fully exploit the complementarity of multilevel features.<n>This paper proposes a shallow-deep synergistic detection network (SDS-Net) that efficiently models multilevel feature representations.
- Score: 0.18641315013048293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current CNN-based infrared small target detection(IRSTD) methods generally overlook the heterogeneity between shallow and deep features, leading to inefficient collaboration between shallow fine grained structural information and deep high-level semantic representations. Additionally, the dependency relationships and fusion mechanisms across different feature hierarchies lack systematic modeling, which fails to fully exploit the complementarity of multilevel features. These limitations hinder IRSTD performance while incurring substantial computational costs. To address these challenges, this paper proposes a shallow-deep synergistic detection network (SDS-Net) that efficiently models multilevel feature representations to increase both the detection accuracy and computational efficiency in IRSTD tasks. SDS-Net introduces a dual-branch architecture that separately models the structural characteristics and semantic properties of features, effectively preserving shallow spatial details while capturing deep semantic representations, thereby achieving high-precision detection with significantly improved inference speed. Furthermore, the network incorporates an adaptive feature fusion module to dynamically model cross-layer feature correlations, enhancing overall feature collaboration and representation capability. Comprehensive experiments on three public datasets (NUAA-SIRST, NUDT-SIRST, and IRSTD-1K) demonstrate that SDS-Net outperforms state-of-the-art IRSTD methods while maintaining low computational complexity and high inference efficiency, showing superior detection performance and broad application prospects. Our code will be made public at https://github.com/PhysiLearn/SDS-Net.
Related papers
- EPANet: Efficient Path Aggregation Network for Underwater Fish Detection [6.6069949373696994]
We propose an efficient path aggregation network (EPANet) for underwater fish detection (UFD)<n>EPANet consists of two key components: an efficient path aggregation feature pyramid network (EPA-FPN) and a multi-scale diverse-division short path bottleneck (MS-DDSP bottleneck)<n> experiments on benchmark UFD datasets demonstrate that EPANet outperforms state-of-the-art methods in terms of detection accuracy and inference speed.
arXiv Detail & Related papers (2025-08-01T11:09:13Z) - RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection [23.54800619558163]
Infrared small target detection is a challenging task due to its unique characteristics.<n>Recent CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules.<n>We propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection.
arXiv Detail & Related papers (2025-06-03T03:18:17Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
We propose a single-point supervised high-resolution dynamic network (SSHD-Net)
It achieves state-of-the-art (SOTA) detection performance using only single-point supervision.
Experiments on the publicly available datasets NUDT-SIRST and IRSTD-1k demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-08-04T09:44:47Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection [95.84616822805664]
We introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement.<n>In order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation.
arXiv Detail & Related papers (2023-08-17T11:57:49Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Model Inspired Autoencoder for Unsupervised Hyperspectral Image
Super-Resolution [25.878793557013207]
This paper focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image.
Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples.
We make the first attempt to design a model inspired deep network for HSI super-resolution in an unsupervised manner.
arXiv Detail & Related papers (2021-10-22T05:15:16Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
arXiv Detail & Related papers (2020-12-15T19:33:09Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.