Recommender systems, stigmergy, and the tyranny of popularity
- URL: http://arxiv.org/abs/2506.06162v2
- Date: Fri, 04 Jul 2025 03:51:55 GMT
- Title: Recommender systems, stigmergy, and the tyranny of popularity
- Authors: Zackary Okun Dunivin, Paul E. Smaldino,
- Abstract summary: We propose an overhaul of search platforms to incorporate user-specific calibration.<n>We advise platform developers on how text embeddings and LLMs could be implemented in ways that increase user autonomy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific recommender systems, such as Google Scholar and Web of Science, are essential tools for discovery. Search algorithms that power work through stigmergy, a collective intelligence mechanism that surfaces useful paths through repeated engagement. While generally effective, this "rich-get-richer" dynamic results in a small number of high-profile papers that dominate visibility. This essay argues argue that these algorithm over-reliance on popularity fosters intellectual homogeneity and exacerbates structural inequities, stifling innovative and diverse perspectives critical for scientific progress. We propose an overhaul of search platforms to incorporate user-specific calibration, allowing researchers to manually adjust the weights of factors like popularity, recency, and relevance. We also advise platform developers on how text embeddings and LLMs could be implemented in ways that increase user autonomy. While our suggestions are particularly pertinent to aligning recommender systems with scientific values, these ideas are broadly applicable to information access systems in general. Designing platforms that increase user autonomy is an important step toward more robust and dynamic information
Related papers
- From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research.<n>We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn.<n>We demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking.
arXiv Detail & Related papers (2025-06-23T17:27:19Z) - IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery [27.218896203253987]
IRIS is an open-source platform designed for researchers to leverage large language models (LLMs)-assisted scientific ideation.<n>IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis.<n>We conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation.
arXiv Detail & Related papers (2025-04-23T14:01:36Z) - Investigating Popularity Bias Amplification in Recommender Systems Employed in the Entertainment Domain [0.19036571490366497]
This work summarizes our research on investigating the amplification of popularity bias in recommender systems within the entertainment sector.<n>We demonstrate that an item's recommendation frequency is positively correlated with its popularity.<n>As a result, user groups with little interest in popular content receive less accurate recommendations compared to those who prefer widely popular items.
arXiv Detail & Related papers (2025-04-07T05:58:01Z) - A Socratic RAG Approach to Connect Natural Language Queries on Research Topics with Knowledge Organization Systems [0.3782392304044599]
We propose a Retrieval Augmented Generation (RAG) agent that maps natural language queries about research topics to machine-interpretable semantic entities.<n>Our approach combines RAG with Socratic dialogue to align a user's intuitive understanding of research topics with established Knowledge Organization Systems.
arXiv Detail & Related papers (2025-02-20T19:58:59Z) - Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
This tutorial explores two primary approaches for integrating large language models (LLMs)<n>It provides a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions.<n>Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference.
arXiv Detail & Related papers (2025-02-19T14:48:25Z) - Interactive Counterfactual Exploration of Algorithmic Harms in Recommender Systems [3.990406494980651]
This study introduces an interactive tool designed to help users comprehend and explore the impacts of algorithmic harms in recommender systems.
By leveraging visualizations, counterfactual explanations, and interactive modules, the tool allows users to investigate how biases such as miscalibration affect their recommendations.
arXiv Detail & Related papers (2024-09-10T23:58:27Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.<n>ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.<n>We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - PIE: Personalized Interest Exploration for Large-Scale Recommender
Systems [0.0]
We present a framework for exploration in large-scale recommender systems to address these challenges.
Our methodology can be easily integrated into an existing large-scale recommender system with minimal modifications.
Our work has been deployed in production on Facebook Watch, a popular video discovery and sharing platform serving billions of users.
arXiv Detail & Related papers (2023-04-13T22:25:09Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.