Antithetic Noise in Diffusion Models
- URL: http://arxiv.org/abs/2506.06185v1
- Date: Fri, 06 Jun 2025 15:46:26 GMT
- Title: Antithetic Noise in Diffusion Models
- Authors: Jing Jia, Sifan Liu, Bowen Song, Wei Yuan, Liyue Shen, Guanyang Wang,
- Abstract summary: We find that pairing each initial noise with its negation consistently yields strongly negatively correlated samples.<n>Our framework is training-free, model-agnostic, and adds no runtime overhead.
- Score: 13.216777115252563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We initiate a systematic study of antithetic initial noise in diffusion models. Across unconditional models trained on diverse datasets, text-conditioned latent-diffusion models, and diffusion-posterior samplers, we find that pairing each initial noise with its negation consistently yields strongly negatively correlated samples. To explain this phenomenon, we combine experiments and theoretical analysis, leading to a symmetry conjecture that the learned score function is approximately affine antisymmetric (odd symmetry up to a constant shift), and provide evidence supporting it. Leveraging this negative correlation, we enable two applications: (1) enhancing image diversity in models like Stable Diffusion without quality loss, and (2) sharpening uncertainty quantification (e.g., up to 90% narrower confidence intervals) when estimating downstream statistics. Building on these gains, we extend the two-point pairing to a randomized quasi-Monte Carlo estimator, which further improves estimation accuracy. Our framework is training-free, model-agnostic, and adds no runtime overhead.
Related papers
- A Simple Analysis of Discretization Error in Diffusion Models [3.6042771517920724]
Diffusion models, formulated as discretizations of differential equations (SDEs), achieve state-of-the-art generative performance.<n>We present a simplified theoretical framework for analyzing the the-preserving-Maruyama discretization of variance-preserving SDEs.<n>Our work bridges theoretical rigor with practical efficiency in diffusion-based generative modeling.
arXiv Detail & Related papers (2025-06-10T01:46:42Z) - Spatial Reasoning with Denoising Models [49.83744014336816]
We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.<n>For the first time, that order of generation can successfully be predicted by the denoising network itself.<n>Using these findings, we can increase the accuracy of specific reasoning tasks from 1% to >50%.
arXiv Detail & Related papers (2025-02-28T14:08:30Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Interpreting and Improving Diffusion Models from an Optimization Perspective [4.5993996573872185]
We use this observation to interpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function.
We propose a new gradient-estimation sampler, generalizing DDIM using insights from our theoretical results.
arXiv Detail & Related papers (2023-06-08T00:56:33Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.