Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning
- URL: http://arxiv.org/abs/2506.06205v1
- Date: Fri, 06 Jun 2025 16:08:47 GMT
- Title: Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning
- Authors: Sheng Chen, Peiyu He, Jiaxin Hu, Ziyang Liu, Yansheng Wang, Tao Xu, Chi Zhang, Chongchong Zhang, Chao An, Shiyu Cai, Duo Cao, Kangping Chen, Shuai Chu, Tianwei Chu, Mingdi Dan, Min Du, Weiwei Fang, Pengyou Fu, Junkai Hu, Xiaowei Jiang, Zhaodi Jiang, Fuxuan Li, Jun Li, Minghui Li, Mingyao Li, Yanchang Li, Zhibin Li, Guangming Liu, Kairui Liu, Lihao Liu, Weizhi Liu, Xiaoshun Liu, Yufei Liu, Yunfei Liu, Qiang Lu, Yuanfei Luo, Xiang Lv, Hongying Ma, Sai Ma, Lingxian Mi, Sha Sa, Hongxiang Shu, Lei Tian, Chengzhi Wang, Jiayu Wang, Kaijie Wang, Qingyi Wang, Renwen Wang, Tao Wang, Wei Wang, Xirui Wang, Chao Wei, Xuguang Wei, Zijun Xia, Zhaohao Xiao, Tingshuai Yan, Liyan Yang, Yifan Yang, Zhikai Yang, Zhong Yin, Li Yuan, Liuchun Yuan, Chi Zhang, Jinyang Zhang, Junhui Zhang, Linge Zhang, Zhenyi Zhang, Zheyu Zhang, Dongjie Zhu, Hang Li, Yangang Zhang,
- Abstract summary: Astra is a comprehensive dual-model architecture for mobile robot navigation.<n>Astra-Global processes vision and language inputs to perform self and goal localization.<n>Astra-Local handles local path planning and odometry estimation.
- Score: 40.770287109084826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Related papers
- Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots [50.0783429451902]
Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse visual perception modules tailored to specific scenarios.<n> occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding.<n>We present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline.
arXiv Detail & Related papers (2025-07-27T10:47:00Z) - Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System [7.266794815157721]
We propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a fine-tuned Vision Language Model (VLM)<n>The VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning.<n>This is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
arXiv Detail & Related papers (2025-06-05T13:27:41Z) - Deploying Foundation Model-Enabled Air and Ground Robots in the Field: Challenges and Opportunities [65.98704516122228]
The integration of foundation models (FMs) into robotics has enabled robots to understand natural language and reason about the semantics in their environments.<n>This paper addresses the deployment of FM-enabled robots in the field, where missions often require a robot to operate in large-scale and unstructured environments.<n>We present the first demonstration of large-scale LLM-enabled robot planning in unstructured environments with several kilometers of missions.
arXiv Detail & Related papers (2025-05-14T15:28:43Z) - Watch Your STEPP: Semantic Traversability Estimation using Pose Projected Features [4.392942391043664]
We propose a method for estimating terrain traversability by learning from demonstrations of human walking.<n>Our approach leverages dense, pixel-wise feature embeddings generated using the DINOv2 vision Transformer model.<n>By minimizing loss, the network distinguishes between familiar terrain with a low reconstruction error and unfamiliar or hazardous terrain with a higher reconstruction error.
arXiv Detail & Related papers (2025-01-29T11:53:58Z) - Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe
Quadruped Navigation [1.2783783498844021]
A typical SOTA system is composed of four main modules -- mapper, global planner, local planner, and command-tracking controller.
We build a robust and safe local planner which is designed to generate a velocity plan to track a coarsely planned path from the global planner.
Using our framework, a quadruped robot can autonomously navigate in various complex environments without a collision and generate a smoother command plan compared to the baseline method.
arXiv Detail & Related papers (2022-04-19T04:01:44Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
Navigation is at the crossroad of multiple disciplines, it combines notions of computer vision, robotics and control.
This work aimed at creating, in a simulation, a navigation pipeline whose transfer to the real world could be done with as few efforts as possible.
To design the navigation pipeline four main challenges arise; environment, localization, navigation and planning.
arXiv Detail & Related papers (2020-11-20T08:37:03Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.