Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots
- URL: http://arxiv.org/abs/2507.20217v2
- Date: Tue, 29 Jul 2025 02:24:52 GMT
- Title: Humanoid Occupancy: Enabling A Generalized Multimodal Occupancy Perception System on Humanoid Robots
- Authors: Wei Cui, Haoyu Wang, Wenkang Qin, Yijie Guo, Gang Han, Wen Zhao, Jiahang Cao, Zhang Zhang, Jiaru Zhong, Jingkai Sun, Pihai Sun, Shuai Shi, Botuo Jiang, Jiahao Ma, Jiaxu Wang, Hao Cheng, Zhichao Liu, Yang Wang, Zheng Zhu, Guan Huang, Jian Tang, Qiang Zhang,
- Abstract summary: Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse visual perception modules tailored to specific scenarios.<n> occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding.<n>We present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline.
- Score: 50.0783429451902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse heterogeneous visual perception modules tailored to specific scenarios. Among various perception paradigms, occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding. In this work, we present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline. Our framework employs advanced multi-modal fusion techniques to generate grid-based occupancy outputs encoding both occupancy status and semantic labels, thereby enabling holistic environmental understanding for downstream tasks such as task planning and navigation. To address the unique challenges of humanoid robots, we overcome issues such as kinematic interference and occlusion, and establish an effective sensor layout strategy. Furthermore, we have developed the first panoramic occupancy dataset specifically for humanoid robots, offering a valuable benchmark and resource for future research and development in this domain. The network architecture incorporates multi-modal feature fusion and temporal information integration to ensure robust perception. Overall, Humanoid Occupancy delivers effective environmental perception for humanoid robots and establishes a technical foundation for standardizing universal visual modules, paving the way for the widespread deployment of humanoid robots in complex real-world scenarios.
Related papers
- GRAPPA: Generalizing and Adapting Robot Policies via Online Agentic Guidance [15.774237279917594]
We propose an agentic framework for robot self-guidance and self-improvement.<n>Our framework iteratively grounds a base robot policy to relevant objects in the environment.<n>We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - Human-centered In-building Embodied Delivery Benchmark [8.079480672302424]
In this work, we propose a specific commercial scenario simulation, human-centered in-building embodied delivery.
We have developed a brand-new virtual environment system from scratch, constructing a multi-level connected building space modeled after a polar research station.
This environment also includes autonomous human characters and robots with grasping and mobility capabilities.
arXiv Detail & Related papers (2024-06-25T19:19:10Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
The Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams.
This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments.
Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates.
arXiv Detail & Related papers (2021-10-20T00:41:57Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
We address the multi-robot collaborative perception problem, specifically in the context of multi-view infilling for distributed semantic segmentation.
We propose the Multi-Agent Infilling Network: an neural architecture that can be deployed to each agent in a robotic swarm.
Specifically, each robot is in charge of locally encoding and decoding visual information, and an neural mechanism allows for an uncertainty-aware and context-based exchange of intermediate features.
arXiv Detail & Related papers (2021-07-01T22:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.