Model-Driven Graph Contrastive Learning
- URL: http://arxiv.org/abs/2506.06212v1
- Date: Fri, 06 Jun 2025 16:17:22 GMT
- Title: Model-Driven Graph Contrastive Learning
- Authors: Ali Azizpour, Nicolas Zilberstein, Santiago Segarra,
- Abstract summary: We propose $textbfMGCL$, a model-driven graph contrastive learning (GCL) framework.<n>GCL has emerged as a powerful self-supervised framework for learning expressive node or graph representations.<n>Experiments on benchmark datasets demonstrate that MGCL achieves state-of-the-art performance.
- Score: 25.015678499211404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose $\textbf{MGCL}$, a model-driven graph contrastive learning (GCL) framework that leverages graphons (probabilistic generative models for graphs) to guide contrastive learning by accounting for the data's underlying generative process. GCL has emerged as a powerful self-supervised framework for learning expressive node or graph representations without relying on annotated labels, which are often scarce in real-world data. By contrasting augmented views of graph data, GCL has demonstrated strong performance across various downstream tasks, such as node and graph classification. However, existing methods typically rely on manually designed or heuristic augmentation strategies that are not tailored to the underlying data distribution and operate at the individual graph level, ignoring similarities among graphs generated from the same model. Conversely, in our proposed approach, MGCL first estimates the graphon associated with the observed data and then defines a graphon-informed augmentation process, enabling data-adaptive and principled augmentations. Additionally, for graph-level tasks, MGCL clusters the dataset and estimates a graphon per group, enabling contrastive pairs to reflect shared semantics and structure. Extensive experiments on benchmark datasets demonstrate that MGCL achieves state-of-the-art performance, highlighting the advantages of incorporating generative models into GCL.
Related papers
- GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network [6.738515963971333]
We propose a novel deep graph clustering model, GCL-GCN, to address the limitations of existing models in capturing local dependencies and complex structures.<n>GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships.<n>In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix.
arXiv Detail & Related papers (2025-07-25T09:25:55Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)<n>RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.<n>During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Graph Contrastive Learning with Personalized Augmentation [17.714437631216516]
Graph contrastive learning (GCL) has emerged as an effective tool for learning unsupervised representations of graphs.
We propose a principled framework, termed as textitGraph contrastive learning with textitPersonalized textitAugmentation (GPA)
GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector.
arXiv Detail & Related papers (2022-09-14T11:37:48Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Graph Contrastive Learning Automated [94.41860307845812]
Graph contrastive learning (GraphCL) has emerged with promising representation learning performance.
The effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset.
This paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data.
arXiv Detail & Related papers (2021-06-10T16:35:27Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.