STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving
- URL: http://arxiv.org/abs/2506.06218v1
- Date: Fri, 06 Jun 2025 16:25:22 GMT
- Title: STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving
- Authors: Christian Fruhwirth-Reisinger, Dušan Malić, Wei Lin, David Schinagl, Samuel Schulter, Horst Possegger,
- Abstract summary: STSBench is a framework to benchmark holistic understanding of vision-language models (VLMs) for autonomous driving.<n>The benchmark features 43 diverse scenarios spanning multiple views, resulting in 971 human-verified multiple-choice questions.<n>A thorough evaluation uncovers shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments.
- Score: 16.602141801221364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce STSBench, a scenario-based framework to benchmark the holistic understanding of vision-language models (VLMs) for autonomous driving. The framework automatically mines pre-defined traffic scenarios from any dataset using ground-truth annotations, provides an intuitive user interface for efficient human verification, and generates multiple-choice questions for model evaluation. Applied to the NuScenes dataset, we present STSnu, the first benchmark that evaluates the spatio-temporal reasoning capabilities of VLMs based on comprehensive 3D perception. Existing benchmarks typically target off-the-shelf or fine-tuned VLMs for images or videos from a single viewpoint and focus on semantic tasks such as object recognition, dense captioning, risk assessment, or scene understanding. In contrast, STSnu evaluates driving expert VLMs for end-to-end driving, operating on videos from multi-view cameras or LiDAR. It specifically assesses their ability to reason about both ego-vehicle actions and complex interactions among traffic participants, a crucial capability for autonomous vehicles. The benchmark features 43 diverse scenarios spanning multiple views and frames, resulting in 971 human-verified multiple-choice questions. A thorough evaluation uncovers critical shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments. These findings highlight the urgent need for architectural advances that explicitly model spatio-temporal reasoning. By addressing a core gap in spatio-temporal evaluation, STSBench enables the development of more robust and explainable VLMs for autonomous driving.
Related papers
- Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving [27.39309272688527]
Interpretable communication is essential for safe and trustworthy autonomous driving.<n>Current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios.<n>Box-QAymo is a box-referring dataset and benchmark designed to evaluate robustness and finetune VLMs on spatial and temporal reasoning over user-specified objects.
arXiv Detail & Related papers (2025-07-01T07:40:16Z) - VideoMolmo: Spatio-Temporal Grounding Meets Pointing [66.19964563104385]
VideoMolmo is a model tailored for fine-grained pointing of video sequences.<n>A novel temporal mask fusion employs SAM2 for bidirectional point propagation.<n>To evaluate the generalization of VideoMolmo, we introduce VPoMolS-temporal, a challenging out-of-distribution benchmark spanning five real-world scenarios.
arXiv Detail & Related papers (2025-06-05T17:59:29Z) - Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding [10.242043337117005]
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering.<n>However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored.<n>We introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos.
arXiv Detail & Related papers (2025-04-20T07:50:44Z) - NuScenes-SpatialQA: A Spatial Understanding and Reasoning Benchmark for Vision-Language Models in Autonomous Driving [10.41584658117874]
We propose NuScenes-SpatialQA, the first large-scale ground-truth-based Question-Answer (QA) benchmark designed to evaluate the spatial understanding and reasoning capabilities of Vision-Language Models (VLMs) in autonomous driving.<n>Built upon the NuScenes dataset, the benchmark is constructed through an automated 3D scene graph generation pipeline and a QA generation pipeline.<n>Using this benchmark, we conduct extensive experiments on diverse VLMs, including both general and spatial-enhanced models, providing the first comprehensive evaluation of their spatial capabilities in autonomous driving.
arXiv Detail & Related papers (2025-04-04T04:43:10Z) - ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models [63.12671761097701]
Vision-Language Models (Ms) struggle to analyze elements like traveled distance and speed of moving objects.<n>We construct a benchmark dataset referred to as STKit and ST-Bench.<n>We show that ST-VLM generalizes robustly across diverse domains and tasks.
arXiv Detail & Related papers (2025-03-25T05:08:06Z) - DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding [76.3876070043663]
We propose DriveLMM-o1, a dataset and benchmark designed to advance step-wise visual reasoning for autonomous driving.<n>Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning.<n>Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model.
arXiv Detail & Related papers (2025-03-13T17:59:01Z) - Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives [56.528835143531694]
We introduce DriveBench, a benchmark dataset designed to evaluate Vision-Language Models (VLMs)<n>Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding.<n>We propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding.
arXiv Detail & Related papers (2025-01-07T18:59:55Z) - Hints of Prompt: Enhancing Visual Representation for Multimodal LLMs in Autonomous Driving [65.04643267731122]
General MLLMs combined with CLIP often struggle to represent driving-specific scenarios accurately.
We propose the Hints of Prompt (HoP) framework, which introduces three key enhancements.
These hints are fused through a Hint Fusion module, enriching visual representations and enhancing multimodal reasoning.
arXiv Detail & Related papers (2024-11-20T06:58:33Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.<n>Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
We develop an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving.
In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations.
arXiv Detail & Related papers (2024-03-28T21:18:33Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.