Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving
- URL: http://arxiv.org/abs/2507.00525v1
- Date: Tue, 01 Jul 2025 07:40:16 GMT
- Title: Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving
- Authors: Djamahl Etchegaray, Yuxia Fu, Zi Huang, Yadan Luo,
- Abstract summary: Interpretable communication is essential for safe and trustworthy autonomous driving.<n>Current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios.<n>Box-QAymo is a box-referring dataset and benchmark designed to evaluate robustness and finetune VLMs on spatial and temporal reasoning over user-specified objects.
- Score: 27.39309272688527
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Interpretable communication is essential for safe and trustworthy autonomous driving, yet current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios. Existing driving-oriented VQA datasets are limited to full-scene descriptions or waypoint prediction, preventing the assessment of whether VLMs can respond to localized user-driven queries. We introduce Box-QAymo, a box-referring dataset and benchmark designed to both evaluate and finetune VLMs on spatial and temporal reasoning over user-specified objects. Users express intent by drawing bounding boxes, offering a fast and intuitive interface for focused queries in complex scenes. Specifically, we propose a hierarchical evaluation protocol that begins with binary sanity-check questions to assess basic model capacities, and progresses to (1) attribute prediction for box-referred objects, (2) motion understanding of target instances, and (3) spatiotemporal motion reasoning over inter-object dynamics across frames. To support this, we crowd-sourced fine-grained object classes and visual attributes that reflect the complexity drivers encounter, and extract object trajectories to construct temporally grounded QA pairs. Rigorous quality control through negative sampling, temporal consistency checks, and difficulty-aware balancing guarantee dataset robustness and diversity. Our comprehensive evaluation reveals significant limitations in current VLMs when queried about perception questions, highlighting the gap in achieving real-world performance. This work provides a foundation for developing more robust and interpretable autonomous driving systems that can communicate effectively with users under real-world conditions. Project page and dataset are available at https://djamahl99.github.io/qaymo-pages/.
Related papers
- VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning [10.497961559068493]
Visual transformation reasoning (VTR) is a vital cognitive capability that empowers intelligent agents to understand dynamic scenes.<n>Existing benchmarks suffer from a sim-to-real gap, limited task complexity, and incomplete reasoning coverage.<n>VisualTrans is the first comprehensive benchmark specifically designed for VTR in real-world human-object interaction scenarios.
arXiv Detail & Related papers (2025-08-06T03:07:05Z) - STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving [16.602141801221364]
STSBench is a framework to benchmark holistic understanding of vision-language models (VLMs) for autonomous driving.<n>The benchmark features 43 diverse scenarios spanning multiple views, resulting in 971 human-verified multiple-choice questions.<n>A thorough evaluation uncovers shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments.
arXiv Detail & Related papers (2025-06-06T16:25:22Z) - Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting [60.58915701973593]
We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning.<n>Cat-V integrates three key components: a Segmenter based on SAMI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-UniVL, and a Captioner using Intern-2.5.<n>Our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data.
arXiv Detail & Related papers (2025-04-07T22:35:36Z) - NuScenes-SpatialQA: A Spatial Understanding and Reasoning Benchmark for Vision-Language Models in Autonomous Driving [10.41584658117874]
We propose NuScenes-SpatialQA, the first large-scale ground-truth-based Question-Answer (QA) benchmark designed to evaluate the spatial understanding and reasoning capabilities of Vision-Language Models (VLMs) in autonomous driving.<n>Built upon the NuScenes dataset, the benchmark is constructed through an automated 3D scene graph generation pipeline and a QA generation pipeline.<n>Using this benchmark, we conduct extensive experiments on diverse VLMs, including both general and spatial-enhanced models, providing the first comprehensive evaluation of their spatial capabilities in autonomous driving.
arXiv Detail & Related papers (2025-04-04T04:43:10Z) - DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding [76.3876070043663]
We propose DriveLMM-o1, a dataset and benchmark designed to advance step-wise visual reasoning for autonomous driving.<n>Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning.<n>Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model.
arXiv Detail & Related papers (2025-03-13T17:59:01Z) - Embodied Scene Understanding for Vision Language Models via MetaVQA [42.70816811661304]
Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications.<n>We present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics.<n>Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations.
arXiv Detail & Related papers (2025-01-15T21:36:19Z) - DriveLM: Driving with Graph Visual Question Answering [57.51930417790141]
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems.<n>We propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving.
arXiv Detail & Related papers (2023-12-21T18:59:12Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Found a Reason for me? Weakly-supervised Grounded Visual Question
Answering using Capsules [85.98177341704675]
The problem of grounding VQA tasks has seen an increased attention in the research community recently.
We propose a visual capsule module with a query-based selection mechanism of capsule features.
We show that integrating the proposed capsule module in existing VQA systems significantly improves their performance on the weakly supervised grounding task.
arXiv Detail & Related papers (2021-05-11T07:45:32Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.