A Reinforcement Learning Approach for RIS-aided Fair Communications
- URL: http://arxiv.org/abs/2506.06344v2
- Date: Wed, 11 Jun 2025 07:31:47 GMT
- Title: A Reinforcement Learning Approach for RIS-aided Fair Communications
- Authors: Alex Pierron, Michel Barbeau, Luca De Cicco, Jose Rubio-Hernan, Joaquin Garcia-Alfaro,
- Abstract summary: Reconfigurable Intelligent Surfaces (RISs) are composed of physical elements that can dynamically alter electromagnetic wave properties to enhance beamforming.<n>We propose a novel method that aims at obtaining an efficient and fair duplex RIS-RL system for multiple legitimate UE units.
- Score: 1.3859182212825962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconfigurable Intelligent Surfaces (RISs) are composed of physical elements that can dynamically alter electromagnetic wave properties to enhance beamforming and leading to improvements in areas with low coverage properties. They have the potential to be combined with Reinforcement Learning (RL) techniques to achieve network performance and energy efficiency via optimization techniques. In addition to performance and energy improvements, it is also crucial to consider the concept of fair communications. RISs must ensure that User Equipment (UE) units receive their signals with adequate strength, without other UE being deprived of service due to insufficient power. In this paper, we address such a problem. We explore the fairness properties of previous work and propose a novel method that aims at obtaining an efficient and fair duplex RIS-RL system for multiple legitimate UE units. We report and discuss our experimental work and simulation results. We also release our code and datasets to foster further research in the topic.
Related papers
- Joint Resource Management for Energy-efficient UAV-assisted SWIPT-MEC: A Deep Reinforcement Learning Approach [50.52139512096988]
6G Internet of Things (IoT) networks face challenges in remote areas and disaster scenarios where ground infrastructure is unavailable.<n>This paper proposes a novel aerial unmanned vehicle (UAV)-assisted computing (MEC) system enhanced by directional antennas to provide both computational and energy support for ground edge terminals.
arXiv Detail & Related papers (2025-05-06T06:46:19Z) - Federated Deep Reinforcement Learning for Energy Efficient Multi-Functional RIS-Assisted Low-Earth Orbit Networks [14.638758375246642]
We propose a novel network architecture that deploys the multifunctional reconfigurable intelligent surface (MF-RIS) in low-Earth orbit (LEO)<n>Unlike traditional RIS with only signal reflection, MF-RIS can reflect, amplify and harvest signals.<n>We show that the proposed LEO-MF-RIS architecture has demonstrated its effectiveness.
arXiv Detail & Related papers (2025-01-19T15:31:05Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
Federated learning (FL) requires edge devices to perform local training and exchange information with a parameter server.
A critical challenge in practical FL systems is the rapid energy depletion of battery-limited edge devices.
We apply energy harvesting technique in FL systems to extract ambient energy for continuously powering edge devices.
arXiv Detail & Related papers (2024-05-17T03:41:40Z) - A Safe Deep Reinforcement Learning Approach for Energy Efficient
Federated Learning in Wireless Communication Networks [37.71759652012053]
Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique.
Despite efforts currently being made in FL, its environmental impact is still an open problem.
We propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required.
arXiv Detail & Related papers (2023-08-21T12:02:54Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Differentially Private Federated Learning via Reconfigurable Intelligent
Surface [27.004823731436765]
Federated learning (FL) enables the collaborative training of a global model over decentralized local datasets without sharing them.
We propose a reconfigurable intelligent surface (RIS) empowered over-the-air FL system to alleviate the dilemma between learning accuracy and privacy.
arXiv Detail & Related papers (2022-03-31T13:45:02Z) - Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between
Convergence and Power Transfer [42.30741737568212]
We propose the solution of powering devices using wireless power transfer (WPT)
This work aims at the derivation of guidelines on deploying the resultant wirelessly powered FEEL (WP-FEEL) system.
The results provide useful guidelines on WPT provisioning to provide a guaranteer on learning performance.
arXiv Detail & Related papers (2021-02-24T15:47:34Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
federated learning (FL) over massive mobile edge devices opens new horizons for numerous intelligent mobile applications.
FL imposes huge communication and computation burdens on participating devices due to periodical global synchronization and continuous local training.
We develop a convergence-guaranteed FL algorithm enabling flexible communication compression.
arXiv Detail & Related papers (2020-12-22T02:54:18Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.