Heart Rate Classification in ECG Signals Using Machine Learning and Deep Learning
- URL: http://arxiv.org/abs/2506.06349v2
- Date: Mon, 16 Jun 2025 16:40:48 GMT
- Title: Heart Rate Classification in ECG Signals Using Machine Learning and Deep Learning
- Authors: Thien Nhan Vo,
- Abstract summary: This study addresses the classification of heartbeats from ECG signals through two distinct approaches.<n>Traditional machine learning utilizing hand-crafted features and deep learning via transformed images of ECG beats.<n>Models such as SVM and AdaBoost yielded significantly lower scores, indicating limited suitability for this task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study addresses the classification of heartbeats from ECG signals through two distinct approaches: traditional machine learning utilizing hand-crafted features and deep learning via transformed images of ECG beats. The dataset underwent preprocessing steps, including downsampling, filtering, and normalization, to ensure consistency and relevance for subsequent analysis. In the first approach, features such as heart rate variability (HRV), mean, variance, and RR intervals were extracted to train various classifiers, including SVM, Random Forest, AdaBoost, LSTM, Bi-directional LSTM, and LightGBM. The second approach involved transforming ECG signals into images using Gramian Angular Field (GAF), Markov Transition Field (MTF), and Recurrence Plots (RP), with these images subsequently classified using CNN architectures like VGG and Inception. Experimental results demonstrate that the LightGBM model achieved the highest performance, with an accuracy of 99% and an F1 score of 0.94, outperforming the image-based CNN approach (F1 score of 0.85). Models such as SVM and AdaBoost yielded significantly lower scores, indicating limited suitability for this task. The findings underscore the superior ability of hand-crafted features to capture temporal and morphological variations in ECG signals compared to image-based representations of individual beats. Future investigations may benefit from incorporating multi-lead ECG signals and temporal dependencies across successive beats to enhance classification accuracy further.
Related papers
- GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - VizECGNet: Visual ECG Image Network for Cardiovascular Diseases Classification with Multi-Modal Training and Knowledge Distillation [0.7405975743268344]
In practice, ECG data is stored as either digitized signals or printed images.
We propose VizECGNet, which uses only printed ECG graphics to determine the prognosis of multiple cardiovascular diseases.
arXiv Detail & Related papers (2024-08-06T01:34:43Z) - Interpretable Pre-Trained Transformers for Heart Time-Series Data [15.377534937558744]
We create two pre-trained general purpose cardiac models, PPG-PT and ECG-PT.
We highlight that individual attention heads respond to specific physiologically relevent features, such as the dicrotic notch in PPG and the P-wave in ECG.
These pre-trained models are straightforward to fine-tune for tasks such as classification of atrial fibrillation (AF), and beat detection in photoplethysmography.
arXiv Detail & Related papers (2024-07-30T12:22:03Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - ECG classification using Deep CNN and Gramian Angular Field [2.685668802278155]
The proposed method is based on transforming time frequency 1D vectors into 2D images using Gramian Angular Field transform.
The obtained results show a classification accuracy of 97.47% and 98.65% for anomaly detection.
This has significant implications in the diagnosis and treatment of cardiovascular diseases and detection of anomalies.
arXiv Detail & Related papers (2023-07-25T13:26:52Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
We propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification.
In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information.
We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively.
arXiv Detail & Related papers (2021-07-21T03:48:35Z) - Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal [1.52292571922932]
We introduce a dataset with multiple stress levels and then classify these levels using a novel deep learning approach.
We made signal images multimodal and multidomain by converting them into time-frequency and frequency domain.
With proposed fusion framework and using ECG signal to image conversion, we reach an average accuracy of 85.45%.
arXiv Detail & Related papers (2020-08-12T18:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.