ECG classification using Deep CNN and Gramian Angular Field
- URL: http://arxiv.org/abs/2308.02395v1
- Date: Tue, 25 Jul 2023 13:26:52 GMT
- Title: ECG classification using Deep CNN and Gramian Angular Field
- Authors: Youssef Elmir, Yassine Himeur and Abbes Amira
- Abstract summary: The proposed method is based on transforming time frequency 1D vectors into 2D images using Gramian Angular Field transform.
The obtained results show a classification accuracy of 97.47% and 98.65% for anomaly detection.
This has significant implications in the diagnosis and treatment of cardiovascular diseases and detection of anomalies.
- Score: 2.685668802278155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper study provides a novel contribution to the field of signal
processing and DL for ECG signal analysis by introducing a new feature
representation method for ECG signals. The proposed method is based on
transforming time frequency 1D vectors into 2D images using Gramian Angular
Field transform. Moving on, the classification of the transformed ECG signals
is performed using Convolutional Neural Networks (CNN). The obtained results
show a classification accuracy of 97.47% and 98.65% for anomaly detection.
Accordingly, in addition to improving the classification performance compared
to the state-of-the-art, the feature representation helps identify and
visualize temporal patterns in the ECG signal, such as changes in heart rate,
rhythm, and morphology, which may not be apparent in the original signal. This
has significant implications in the diagnosis and treatment of cardiovascular
diseases and detection of anomalies.
Related papers
- ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers [6.882042556551613]
We propose a deep learning method that combines a one-dimensional convolutional layer with transformer architecture for denoising ECG signals.
The embedding then is used as the input of a transformer network and enhances the capability of the transformer for denoising the ECG signal.
arXiv Detail & Related papers (2024-07-12T03:13:52Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Robustness of convolutional neural networks to physiological ECG noise [0.0]
The electrocardiogram (ECG) is one of the most widespread diagnostic tools in healthcare and supports the diagnosis of cardiovascular disorders.
Deep learning methods are a successful and popular technique to detect indications of disorders from an ECG signal.
There are open questions around the robustness of these methods to various factors, including physiological ECG noise.
We generate clean and noisy versions of an ECG dataset before applying Symmetric Projection Attractor Reconstruction (SPAR) and scalogram image transformations.
A pretrained convolutional neural network is trained using transfer learning to classify these image transforms.
arXiv Detail & Related papers (2021-08-02T08:16:32Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts.
GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data.
We propose a novel Conditional Generative Adrial Network to simultaneously generate ECG signals for different categories and detect cardiac abnormalities.
arXiv Detail & Related papers (2021-07-16T02:53:14Z) - Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal [1.52292571922932]
We introduce a dataset with multiple stress levels and then classify these levels using a novel deep learning approach.
We made signal images multimodal and multidomain by converting them into time-frequency and frequency domain.
With proposed fusion framework and using ECG signal to image conversion, we reach an average accuracy of 85.45%.
arXiv Detail & Related papers (2020-08-12T18:08:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.