The Economic Dispatch of Power-to-Gas Systems with Deep Reinforcement Learning:Tackling the Challenge of Delayed Rewards with Long-Term Energy Storage
- URL: http://arxiv.org/abs/2506.06484v1
- Date: Fri, 06 Jun 2025 19:20:08 GMT
- Title: The Economic Dispatch of Power-to-Gas Systems with Deep Reinforcement Learning:Tackling the Challenge of Delayed Rewards with Long-Term Energy Storage
- Authors: Manuel Sage, Khalil Al Handawi, Yaoyao Fiona Zhao,
- Abstract summary: Power-to-Gas (P2G) technologies gain recognition for enabling the integration of intermittent renewables, such as wind and solar, into electricity grids.<n> determining the most cost-effective operation of these systems is complex due to the volatile nature of renewable energy, electricity prices, and loads.<n>This study presents a new method by thoroughly examining how Deep Reinforcement Learning can be applied to the economic operation of P2G systems.
- Score: 2.781147009075454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Power-to-Gas (P2G) technologies gain recognition for enabling the integration of intermittent renewables, such as wind and solar, into electricity grids. However, determining the most cost-effective operation of these systems is complex due to the volatile nature of renewable energy, electricity prices, and loads. Additionally, P2G systems are less efficient in converting and storing energy compared to battery energy storage systems (BESs), and the benefits of converting electricity into gas are not immediately apparent. Deep Reinforcement Learning (DRL) has shown promise in managing the operation of energy systems amidst these uncertainties. Yet, DRL techniques face difficulties with the delayed reward characteristic of P2G system operation. Previous research has mostly focused on short-term studies that look at the energy conversion process, neglecting the long-term storage capabilities of P2G. This study presents a new method by thoroughly examining how DRL can be applied to the economic operation of P2G systems, in combination with BESs and gas turbines, over extended periods. Through three progressively more complex case studies, we assess the performance of DRL algorithms, specifically Deep Q-Networks and Proximal Policy Optimization, and introduce modifications to enhance their effectiveness. These modifications include integrating forecasts, implementing penalties on the reward function, and applying strategic cost calculations, all aimed at addressing the issue of delayed rewards. Our findings indicate that while DRL initially struggles with the complex decision-making required for P2G system operation, the adjustments we propose significantly improve its capability to devise cost-effective operation strategies, thereby unlocking the potential for long-term energy storage in P2G technologies.
Related papers
- Joint Resource Management for Energy-efficient UAV-assisted SWIPT-MEC: A Deep Reinforcement Learning Approach [50.52139512096988]
6G Internet of Things (IoT) networks face challenges in remote areas and disaster scenarios where ground infrastructure is unavailable.<n>This paper proposes a novel aerial unmanned vehicle (UAV)-assisted computing (MEC) system enhanced by directional antennas to provide both computational and energy support for ground edge terminals.
arXiv Detail & Related papers (2025-05-06T06:46:19Z) - The Energy Loss Phenomenon in RLHF: A New Perspective on Mitigating Reward Hacking [72.45765726160151]
This work identifies the Energy Loss Phenomenon in Reinforcement Learning from Human Feedback and its connection to reward hacking.<n>We propose an Energy loss-aware PPO algorithm (EPPO) which penalizes the increase in energy loss in the final layer during reward calculation to prevent excessive energy loss.
arXiv Detail & Related papers (2025-01-31T18:10:53Z) - Learning a local trading strategy: deep reinforcement learning for grid-scale renewable energy integration [0.0]
This paper explores the use of reinforcement learning for operating grid-scale batteries co-located with solar power.
Our results show RL achieves an average of 61% (and up to 96%) of the approximate theoretical optimal (non-causal) operation.
arXiv Detail & Related papers (2024-11-23T02:55:38Z) - Deep Reinforcement Learning for Community Battery Scheduling under
Uncertainties of Load, PV Generation, and Energy Prices [5.694872363688119]
This paper presents a deep reinforcement learning (RL) strategy to schedule a community battery system in the presence of uncertainties.
We position the community battery to play a versatile role, in integrating local PV energy, reducing peak load, and exploiting energy price fluctuations for arbitrage.
arXiv Detail & Related papers (2023-12-04T13:45:17Z) - Optimal Economic Gas Turbine Dispatch with Deep Reinforcement Learning [4.059196561157555]
Three popular DRL algorithms are implemented for an economic GT dispatch problem on a case study in Alberta, Canada.
Among the tested algorithms and baseline methods, Deep Q-Networks (DQN) obtained the highest rewards.
We propose and implement a method to assign GT operation and maintenance cost dynamically based on operating hours and cycles.
arXiv Detail & Related papers (2023-08-28T22:42:51Z) - Combating Uncertainties in Wind and Distributed PV Energy Sources Using
Integrated Reinforcement Learning and Time-Series Forecasting [2.774390661064003]
unpredictability of renewable energy generation poses challenges for electricity providers and utility companies.
We propose a novel framework with two objectives: (i) combating uncertainty of renewable energy in smart grid by leveraging time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii) establishing distributed and dynamic decision-making framework with multi-agent reinforcement learning using Deep Deterministic Policy Gradient (DDPG) algorithm.
arXiv Detail & Related papers (2023-02-27T19:12:50Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
We propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to plan energy storage systems (ESS)
A quantitative performance comparison proved that the DRL agent outperforms the scenario-based optimization (SO) algorithm.
The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
arXiv Detail & Related papers (2022-12-12T02:24:50Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.