Membership Inference Attacks for Unseen Classes
- URL: http://arxiv.org/abs/2506.06488v1
- Date: Fri, 06 Jun 2025 19:27:52 GMT
- Title: Membership Inference Attacks for Unseen Classes
- Authors: Pratiksha Thaker, Neil Kale, Zhiwei Steven Wu, Virginia Smith,
- Abstract summary: We study membership inference attacks where the adversary or auditor cannot access an entire subclass from the distribution.<n>We show that the performance of shadow model attacks degrades catastrophically.<n>We then demonstrate the promise of another approach, quantile regression, that does not have the same limitations.
- Score: 35.2425044298671
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shadow model attacks are the state-of-the-art approach for membership inference attacks on machine learning models. However, these attacks typically assume an adversary has access to a background (nonmember) data distribution that matches the distribution the target model was trained on. We initiate a study of membership inference attacks where the adversary or auditor cannot access an entire subclass from the distribution -- a more extreme but realistic version of distribution shift than has been studied previously. In this setting, we first show that the performance of shadow model attacks degrades catastrophically, and then demonstrate the promise of another approach, quantile regression, that does not have the same limitations. We show that quantile regression attacks consistently outperform shadow model attacks in the class dropout setting -- for example, quantile regression attacks achieve up to 11$\times$ the TPR of shadow models on the unseen class on CIFAR-100, and achieve nontrivial TPR on ImageNet even with 90% of training classes removed. We also provide a theoretical model that illustrates the potential and limitations of this approach.
Related papers
- On Transfer-based Universal Attacks in Pure Black-box Setting [94.92884394009288]
We study the role of prior knowledge of the target model data and number of classes in attack performance.<n>We also provide several interesting insights based on our analysis, and demonstrate that priors cause overestimation in transferability scores.
arXiv Detail & Related papers (2025-04-11T10:41:20Z) - Membership Inference Attacks on Diffusion Models via Quantile Regression [30.30033625685376]
We demonstrate a privacy vulnerability of diffusion models through amembership inference (MI) attack.
Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training.
We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive.
arXiv Detail & Related papers (2023-12-08T16:21:24Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
We introduce Gradient-based Ranking Optimization (GRO) to defend against model extraction attacks on recommender systems.
GRO aims to minimize the loss of the protected target model while maximizing the loss of the attacker's surrogate model.
Results show GRO's superior effectiveness in defending against model extraction attacks.
arXiv Detail & Related papers (2023-10-25T03:30:42Z) - Scalable Membership Inference Attacks via Quantile Regression [35.33158339354343]
Membership inference attacks are designed to determine, using black box access to trained models, whether a particular example was used in training or not.
We introduce a new class of attacks based on performing quantile regression on the distribution of confidence scores induced by the model under attack on points that are not used in training.
arXiv Detail & Related papers (2023-07-07T16:07:00Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
We propose a new attack method, called system, which can exploit the membership information from the whole training process of the target model.
Our attack achieves at least 6$times$ higher true-positive rate at a low false-positive rate of 0.1% than existing methods.
arXiv Detail & Related papers (2022-08-31T16:02:26Z) - An Efficient Subpopulation-based Membership Inference Attack [11.172550334631921]
We introduce a fundamentally different MI attack approach which obviates the need to train hundreds of shadow models.
We achieve the state-of-the-art membership inference accuracy while significantly reducing the training cost.
arXiv Detail & Related papers (2022-03-04T00:52:06Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
adversarial examples have been long considered a real threat to machine learning models.
We propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models.
arXiv Detail & Related papers (2021-02-09T20:07:13Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
We show that fine-tuning effectively enhances model robustness under white-box FGSM attacks.
We also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples produced by its source model.
To systematically measure the effect of both white-box and black-box attacks, we propose a new metric to evaluate how transferable are the adversarial examples produced by a source model to a target model.
arXiv Detail & Related papers (2020-08-25T15:04:32Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
Supervised Machine Learning (ML) to enhance Intrusion Detection Systems has been the subject of significant research.
retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data.
Here, a complementary approach referred to as 'One-Shot Learning', whereby a limited number of examples of a new attack-class is used to identify a new attack-class.
A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks.
arXiv Detail & Related papers (2020-06-27T11:40:01Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.