Perturbation Analysis of Randomized SVD and its Applications to Statistics
- URL: http://arxiv.org/abs/2203.10262v3
- Date: Sun, 25 May 2025 18:22:21 GMT
- Title: Perturbation Analysis of Randomized SVD and its Applications to Statistics
- Authors: Yichi Zhang, Minh Tang,
- Abstract summary: RSVD is a class of computationally efficient algorithms for computing the truncated SVD of large data matrices.<n>In this paper we derive upper bounds for the $ell$ and $ell_2,infty$ distances between the exact left singular vectors $widehatmathbfU$ of $widehatmathbfM$.<n>We apply our theoretical results to settings where $widehatmathbfM$ is an additive perturbation of some unobserved signal matrix $mathbfM$.
- Score: 8.731676546744353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized singular value decomposition (RSVD) is a class of computationally efficient algorithms for computing the truncated SVD of large data matrices. Given an $m \times n$ matrix $\widehat{{\mathbf M}}$, the prototypical RSVD algorithm outputs an approximation of the $k$ leading left singular vectors of $\widehat{\mathbf{M}}$ by computing the SVD of $\widehat{\mathbf{M}} (\widehat{{\mathbf M}}^{\top} \widehat{\mathbf{M}})^{g} \mathbf G$; here $g \geq 1$ is an integer and $\mathbf G \in \mathbb{R}^{n \times \widetilde{k}}$ is a random Gaussian sketching matrix with $\widetilde{k} \geq k$. In this paper we derive upper bounds for the $\ell_2$ and $\ell_{2,\infty}$ distances between the exact left singular vectors $\widehat{\mathbf{U}}$ of $\widehat{\mathbf{M}}$ and its approximation $\widehat{\mathbf{U}}_g$ (obtained via RSVD), as well as entrywise error bounds when $\widehat{\mathbf{M}}$ is projected onto $\widehat{\mathbf{U}}_g \widehat{\mathbf{U}}_g^{\top}$. These bounds depend on the singular values gap and number of power iterations $g$, and smaller gap requires larger values of $g$ to guarantee the convergences of the $\ell_2$ and $\ell_{2,\infty}$ distances. We apply our theoretical results to settings where $\widehat{\mathbf{M}}$ is an additive perturbation of some unobserved signal matrix $\mathbf{M}$. In particular, we obtain the nearly-optimal convergence rate and asymptotic normality for RSVD on three inference problems, namely, subspace estimation and community detection in random graphs, noisy matrix completion, and PCA with missing data.
Related papers
- Sharp Gap-Dependent Variance-Aware Regret Bounds for Tabular MDPs [54.28273395444243]
We show that the Monotonic Value Omega (MVP) algorithm achieves a variance-aware gap-dependent regret bound of $$tildeOleft(left(sum_Delta_h(s,a)>0 fracH2 log K land mathttVar_maxtextc$.
arXiv Detail & Related papers (2025-06-06T20:33:57Z) - Bivariate Matrix-valued Linear Regression (BMLR): Finite-sample performance under Identifiability and Sparsity Assumptions [0.0]
We study the estimation of parameters in a matrix-valued linear regression model, where the $T$ responses $(Y_t)_t=1T in mathbbRn times p$ and predictors $(X_t)_t=1T in mathbbRm times q$.
We propose explicit optimization-free estimators and establish non-asymptotic convergence rates to quantify their performance.
arXiv Detail & Related papers (2024-12-23T18:03:34Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting [21.002519159190538]
We analyze a distributed algorithm to compute a low-rank matrix factorization on $N$ clients.<n>We obtain a global $mathbfV$ in $mathbbRd times r$ common to all clients and a local $mathbfUi$ in $mathbbRn_itimes r$.
arXiv Detail & Related papers (2024-09-13T12:28:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
This paper considers the task of linear regression with shuffled labels.
$mathbf Y in mathbb Rntimes m, mathbf Pi in mathbb Rntimes p, mathbf B in mathbb Rptimes m$, and $mathbf Win mathbb Rntimes m$, respectively.
arXiv Detail & Related papers (2023-10-02T16:44:47Z) - Matrix Completion in Almost-Verification Time [37.61139884826181]
We provide an algorithm which completes $mathbfM$ on $99%$ of rows and columns.
We show how to boost this partial completion guarantee to a full matrix completion algorithm.
arXiv Detail & Related papers (2023-08-07T15:24:49Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - On the computational and statistical complexity of over-parameterized
matrix sensing [30.785670369640872]
We consider solving the low rank matrix sensing problem with Factorized Gradient Descend (FGD) method.
By decomposing the factorized matrix $mathbfF$ into separate column spaces, we show that $|mathbfF_t - mathbfF_t - mathbfX*|_F2$ converges to a statistical error.
arXiv Detail & Related papers (2021-01-27T04:23:49Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Phase retrieval in high dimensions: Statistical and computational phase
transitions [27.437775143419987]
We consider the problem of reconstructing a $mathbfXstar$ from $m$ (possibly noisy) observations.
In particular, the information-theoretic transition to perfect recovery for full-rank matrices appears at $alpha=1$ and $alpha=2$.
Our work provides an extensive classification of the statistical and algorithmic thresholds in high-dimensional phase retrieval.
arXiv Detail & Related papers (2020-06-09T13:03:29Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
In compressed sensing, the restricted isometry property (RIP) on $M times N$ sensing matrices guarantees efficient reconstruction of sparse vectors.
We investigate the exact average-case time complexity of certifying the RIP property for $Mtimes N$ matrices with i.i.d. $mathcalN(0,1/M)$ entries.
arXiv Detail & Related papers (2020-05-22T16:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.