GeoClip: Geometry-Aware Clipping for Differentially Private SGD
- URL: http://arxiv.org/abs/2506.06549v1
- Date: Fri, 06 Jun 2025 21:41:17 GMT
- Title: GeoClip: Geometry-Aware Clipping for Differentially Private SGD
- Authors: Atefeh Gilani, Naima Tasnim, Lalitha Sankar, Oliver Kosut,
- Abstract summary: A key challenge in Differentially private gradient descent (DP-SGD) is setting the per-sample gradient clipping threshold.<n>We propose GeoClip, a geometry-aware framework that clips and perturbs gradients in a transformed basis aligned with the geometry of the gradient distribution.<n>We provide convergence guarantees for GeoClip and derive a closed-form solution for the optimal transformation that minimizes the amount of noise added while keeping the probability of gradient clipping under control.
- Score: 12.149550080095919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentially private stochastic gradient descent (DP-SGD) is the most widely used method for training machine learning models with provable privacy guarantees. A key challenge in DP-SGD is setting the per-sample gradient clipping threshold, which significantly affects the trade-off between privacy and utility. While recent adaptive methods improve performance by adjusting this threshold during training, they operate in the standard coordinate system and fail to account for correlations across the coordinates of the gradient. We propose GeoClip, a geometry-aware framework that clips and perturbs gradients in a transformed basis aligned with the geometry of the gradient distribution. GeoClip adaptively estimates this transformation using only previously released noisy gradients, incurring no additional privacy cost. We provide convergence guarantees for GeoClip and derive a closed-form solution for the optimal transformation that minimizes the amount of noise added while keeping the probability of gradient clipping under control. Experiments on both tabular and image datasets demonstrate that GeoClip consistently outperforms existing adaptive clipping methods under the same privacy budget.
Related papers
- On the Convergence of DP-SGD with Adaptive Clipping [56.24689348875711]
Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.<n>This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)<n>We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
arXiv Detail & Related papers (2024-12-27T20:29:47Z) - Enhancing DP-SGD through Non-monotonous Adaptive Scaling Gradient Weight [15.139854970044075]
We introduce Differentially Private Per-sample Adaptive Scaling Clipping (DP-PSASC)
This approach replaces traditional clipping with non-monotonous adaptive gradient scaling.
Our theoretical and empirical analyses confirm that DP-PSASC preserves gradient privacy and delivers superior performance across diverse datasets.
arXiv Detail & Related papers (2024-11-05T12:47:30Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Securing Distributed SGD against Gradient Leakage Threats [13.979995939926154]
This paper presents a holistic approach to gradient leakage resilient distributed gradient Descent (SGD)
We analyze two types of strategies for privacy-enhanced federated learning: (i) gradient pruning with random selection or low-rank filtering and (ii) gradient perturbation with additive random noise or differential privacy noise.
We present a gradient leakage resilient approach to securing distributed SGD in federated learning, with differential privacy controlled noise as the tool.
arXiv Detail & Related papers (2023-05-10T21:39:27Z) - Gradient Correction beyond Gradient Descent [63.33439072360198]
gradient correction is apparently the most crucial aspect for the training of a neural network.
We introduce a framework (textbfGCGD) to perform gradient correction.
Experiment results show that our gradient correction framework can effectively improve the gradient quality to reduce training epochs by $sim$ 20% and also improve the network performance.
arXiv Detail & Related papers (2022-03-16T01:42:25Z) - Improving Differentially Private SGD via Randomly Sparsified Gradients [31.295035726077366]
Differentially private gradient observation (DP-SGD) has been widely adopted in deep learning to provide rigorously defined privacy bound compression.
We propose an and utilize RS to strengthen communication cost and strengthen privacy bound compression.
arXiv Detail & Related papers (2021-12-01T21:43:34Z) - Private Adaptive Gradient Methods for Convex Optimization [32.3523019355048]
We propose and analyze differentially private variants of a Gradient Descent (SGD) algorithm with adaptive stepsizes.
We provide upper bounds on the regret of both algorithms and show that the bounds are (worst-case) optimal.
arXiv Detail & Related papers (2021-06-25T16:46:45Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
A differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters.
We propose an algorithm emphGradient Embedding Perturbation (GEP) towards training differentially private deep models with decent accuracy.
arXiv Detail & Related papers (2021-02-25T04:29:58Z) - Understanding Gradient Clipping in Private SGD: A Geometric Perspective [68.61254575987013]
Deep learning models are increasingly popular in many machine learning applications where the training data may contain sensitive information.
Many learning systems now incorporate differential privacy by training their models with (differentially) private SGD.
A key step in each private SGD update is gradient clipping that shrinks the gradient of an individual example whenever its L2 norm exceeds some threshold.
arXiv Detail & Related papers (2020-06-27T19:08:12Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.